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String analysis for cyber strings 8

W. Casey

8.1 STRING ANALYSIS AND CYBER DATA
Astring s any g
Writen language,including this semtence, provides ssings in which informational
messages may be expressed as a sequence of words (cach of which s a sequence
of tettes). However, naturs langusges such 3 English may give rise o ambiguous
meaning. For example, considr the following statement: “Time fles like an a

frui flieslke a banana.” “ettings. s impor E .
with their encoding and interpretation) have discrete, precise meanings. Formal
languages provide the general backdrop fo our discussion of stings.

'A central goal when analyzing cyber data i to seek a sring representation for
the problem’s objects 5o that similrities inthei srin representatons will provide
a meaningful result for the analysis problem at hand. To emphasize this point,
we consider sgaature based detection of cyber stticks and how the problem of
determining safty (or that & system may be compromised) may be considered by
the analysis of strngs. We sct the stage by providing a general background of cyber

d followed by our
remainder of the chapter o common contemporary tchniques used to anayze cyber
sequental or sring data.

8.1.1 CYBER DATA
Many different types of data arise from cyber security scey
few prominent data types and outline an organizational framework for
ut cyber data. Generally, within cyber security s the objects
or may not have much known about them. One way 1o think about
information (known and unknown) for digital objects will be similar to that of
physical objects, such as an antique. An antique is affected by a provenance, or a
istory of events, which affect ts sate. In the real world even a valuable historical

here we will

object may have partial or disputed information concerning its provenance. For
digital objects we consider provenance similarly; there can also be incomplete

Casey, W. (2016). String analysis for cyber strings. In L.

Metcalf & W. Casey (Eds.), Cy
mathematics (pp. 135-156). C
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