WEB CARTOGRAPHY
IN A WORLD OF SERVICES, SDI’S AND WEB 2.0

Barend Köbben
<kobben@itc.nl>

EuroSDR workshop, Lund, 5 May 2011
Background (1)

changing role of cartography in a changing world:

- information disseminated in digital ways
- all about sharing, interoperability, web services, SDIs and the modern two–way Web 2.0
- this has consequences on the design of (web)cartography solutions in this environment
- subject of research projects in our group at ITC
Background (2)

Webcartography research projects at ITC

- share the larger aim of improving mapping within the framework of *loosely coupled, distributed webservice*
- fit within our *SDIlight* approach
Background (2)

Webcartography research projects at ITC

- share the larger aim of improving mapping within the framework of *loosely coupled* webservices
- fit within our *SDI* light approach
Background (2)

Webcartography research projects at ITC

- share the larger aim of improving mapping within the framework of *loosely coupled* webservices
- fit within our *SDI*\textit{light} approach
SDI light approach

- a down-to-earth approach towards SDI
- Open Standards whenever available
- Open Source where possible
- used in teaching, projects and research
- provides researchers, students and partners with a platform for relatively simple, low-cost, yet powerful ways of sharing data amongst various stakeholders
SDI light software stack

client–side

application layer (middle–ware)

data layer (back–end)
SDIlight software stack

client–side

application layer
(middle–ware)
SDIlight software stack

client–side
SDI_{light} software stack

- ILWIS open 3.6
- GeoServer
- MAPServer
- Java

OpenLayers
- possibilities for **direct** and **automatic** production of maps
- where ‘direct’ means:
 generated case–by–case and on–the–fly from the data,
 no conversion or pre-processing needed for purpose of visualisation only
 - important for system to be an SDI node
 - able to consume data from any other SDI node
Mapping in a webservices environment

- possibilities for direct and automatic production of maps
- where ‘automatic’ means: maps will be generated from the spatio-temporal data by the system “working by itself with little or no direct human control” (Concise Oxford Dictionary of Current English)
Mapping in a webservices environment

- possibilities for direct and **automatic** production of maps
- where ‘automatic’ does NOT mean: the system “*simulates human action*” (Oxford English Dictionary)
 - including the cartographic decisions as to what type of map and what map properties to use for different data–types and data–instances
Mapping in a webservices environment

- nowadays a very important dissemination channel
- but partly takes us back to “the old days”:
 - “pre-cooked” maps in a one–way process
 - little user influence on design and content
 - little interactivity and exploration possibilities
 - “cartographer” (map–maker) ≠ user determines most of the map design and usability
How to increase interactivity & user input..?

using rich map formats:

Scalable Vector Graphics

- SVG is open standard XML-based vector graphics
 - High quality (carto)graphics & attribute info
- Some WMS exist with (limited) SVG, but all treat SVG as ‘static graphics format’ only
 - SVG also can hold attribute data
 - SVG also can provide animation
 - SVG also can provide application logic
- Can support built-in Graphical User Interface (GUI)
- Can support animated maps
RIMapperWMS and TimeMapper

- spatial database back-end (PostgreSQL/PostGIS)
 - spatial and attribute data
 - Web Map Service configuration

- server application (Java)
 - responds to WMS compliant requests
 - provides output in SVG
 - with built-in GUI
 - with built-in animation

- mobile or desktop web client
 - renders interactive & dynamic SVG maps
How to automate it fully..?

- needed for mapping services that can adjust to changing circumstances
 - e.g. data source changes
 - e.g. data instance updates
How to automate it fully?

needed for mapping services that can adjust to changing circumstances

- e.g. data source changes
- e.g. data instance updates

became apparent in project

3rd edition National Atlas for the Netherlands
How to automate it fully..?

- create service configuration from data
- direct, based on:
 - cartographic knowledge
 - intended user and/or usage of the map
 - properties of the data
This is not a recent challenge...!

- 1980s: the DLM-DCM paradigm was introduced

 Digital Landscape Model → *Digital Cartographic Model*

- the automatic generation of DCMs from DLMs has been subject of a small surge of research
 - in the 80s using Knowledge Based / Expert Systems

- it somehow this never took off …

 … but it should(?) re–emerge in a service environment
Why did this not happen (yet)...

We think it’s a case of missing information:

- cartographic knowledge
- intended user and/or usage of the map
- properties of the data
Why not...?

We think it’s a case of missing information:

- cartographic knowledge → solved for ‘simple’ maps (most common cases)
- intended user and/or usage of the map
- properties of the data
Why not...?

We think it’s a case of missing information:

- cartographic knowledge → solved for ‘simple’ maps (most common cases)
- intended user and/or usage of the map → solveable for ‘simple’ use goals (most common cases)
- properties of the data
Why not...?

We think it’s a case of missing information:

- cartographic knowledge
 → solved for ‘simple’ maps (most common cases)
- intended user and/or usage of the map
 → solveable for ‘simple’ use goals (most common cases)
- properties of the data
 → this is the main culprit:
 ▶ meta–data is a problem (in real life) anyway
 ▶ automatic meta–data generation even more
 ▶ the meta–data needed is not the usual set only (e.g. measurement level)
Why not...?

another missing part:
a **FORMAL map specification language**

- ≠ service configuration file (e.g. SLD)
 - this is what created by a compiler *based* on the formal map spec, plus (meta-)data and user input

- ≠ traditional map specifications (e.g. topomap specs)
 - these are focussed on producing a specific *map product*, we want a focus on information output

- *formalised specification* in the computer science sense
 - defines an outcome using a formal (declarative) language
 - with degrees of freedom (e.g. ranges of acceptable values)
 - in a controlled and consistent manner
Towards automatic mapping in services environment

- possible use of a *FORMAL map specification language*
QUESTIONS...?

Barend Köbben

kobben@itc.nl

http://www.itc.nl/
http://kartoweb.itc.nl/kobben/
http://www.nationaleatlas.nl/
http://kartoweb.itc.nl/RIMapper/
http://kartoweb.itc.nl/TimeMapper/