
EXERCISE: Introduction to the D3 JavaScript Library for
Interactive Graphs and Maps

Barend Köbben

Version 3.1
October 14, 2016

Contents

1 Introduction 2

2 Three little circles – a first attempt at D3 3
2.1 Using SVG for drawing 4
2.2 Selecting Elements for script access to the DOM . . 4
2.3 Binding Data . 5
2.4 Entering Elements automatically 6

3 A Bar Chart of Population Data 7
3.1 Using D3 data-dependent scaling 9
3.2 Loading external data 10
3.3 Adding an Axis . 13

4 Using D3 for maps 14
4.1 Visualising Geographic Data 14
4.2 Thematic Maps . 17

5 CHALLENGE: Interactively Linking Map and Chart 19

6 Links & References 21

©ITC—University of Twente, Faculty of Geo–Information Science and Earth
Observation. This document may be freely reproduced for educational use. It may
not be edited or translated without the consent of the copyright holder.

ii Dept. of Geo–Information Processing

Key points

In this exercise you will discover the basics of using the
JavaScript D3 library to build dynamic web pages. You will
learn:

1. the principles of using the D3 library
2. D3 selections for DOM access
3. D3 data binding to change the DOM based on data
4. loading external data
5. using D3 scales and axes
6. using D3 for maps

In many cases during these exercises, you will have to type code! →
(HTML, Python, JavaScript or MapServer configuration code). It’s
very easy to make mistakes in such code. HTML code and MapServer
map files are not case–sensitive, but JavaScript is: the variable
mySomething is different than the variable MySomeThing! Also take
care of the special character (→) in the code examples we provide:

→ this character means the line should be typed without in-
terruption, the move to the next line in our example is only
because it would not fit otherwise. So do not type a return
or enter in this place!

Typing the code of longer listings is usually not necessary: You can
copy the code from the filefragments folder in the exercise data.
In this folder you will find all code fragments from the exercises in
text files with the same names as the listing. Do not copy from
the PDF exercise description!

There are several software tools that can help you: Use a text–
editor that is more intelligent than your basic text editor, e.g.
on MacOSX and Linux use TextWrangler or medit, on Windows
Notepad++.This will provide you with line numbers, automatic
highlighting of recognised HTML and JavaScript keywords, etcetera.

Use a modern web–browser: a recent FireFox, Chrome or Opera,
or Internet Explore version 9 or higher. These are HTML5 com-
patible and have built-in web developer tools. This provides error
messages, code views and a JavaScript console, network traffic mon-
itoring, etc. . .

For students that intend to do more work on developing interactive
web applications (using HTML5, CSS, Javascript, etcetera) there
is an Integrated Development Environment available in the ITC
software Manager called Webstorm.

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 1

1 Introduction

The javascript library D3.js was created to fill a need for web-
accessible, sophisticated data visualisation. Its creator is Mike Bo-
stock, who started it as a research project for his PhD work and is
now its main developer as well as a Graphics Editor for the New
York Times.

Until recently, you couldn’t build high-performance, rich internet
applications in the browser unless you built them in Flash or as a
Java applet. Flash and Java are still around on the internet, and
especially for internal web apps, for this reason. D3.js provides the
same performance, but integrated into web standards and the Doc-
ument Object Model (DOM) at the core of HTML. D3 provides
developers with the ability to create rich interactive and animated
content based on data and tie that content to existing web page
elements. It gives you the tools to create high-performance data
dashboards and sophisticated data visualization, and to dynami-
cally update traditional web content.

Figure 1: Principle of the use of the D3 library in HTML pages
(from Meeks, 2015).

In figure 1 you see the common use of D3: A page is typically built
in such a way that the page loads with styles, data, and content as
defined in traditional HTML development [1] with its initial display
using D3 selections of HTML elements [2], either with data-binding
[3] or without it. The selections and data-binding can be used to
modify the structure and appearance of the page [4]. The changes

2 Dept. of Geo–Information Processing

in structure prompt user interaction [5], which causes new selections
with and without data- binding to further alter the page. Step 1
is shown differently because it only happens once (when you load
the page), whereas every other step may happen multiple times,
depending on user interaction.

Learning D3 is not all that easy, because it is not a high-level
charting or mapping library, instead it is a low-level API to bind
data to graphics elements and transform them based on that data.
For example, D3 doesn’t have one single function to create a pie
chart. Rather, it has a function that processes your dataset with
the necessary angles so that, if you pass the dataset to D3’s arc
function, you get the drawing code necessary to represent those
angles. And you need to use yet another function to create the
paths necessary for that code. It’s a much longer process than using
dedicated charting libraries, but the D3 process is also its strength.
Although other charting libraries conveniently allow you to make
line graphs and pie charts, they quickly break down when you want
to make something more complicated than that. D3 allows you
to build whatever data-driven graphics and interactivity you can
think of.

2 Three little circles – a first attempt at D3

Task 1 : Create an HTML webpage called 3LittleCircles.html,
and make sure its contents match the code in listing 1. As explained
in page 1, you can use the text file in the filefragments folder to
avoid having to type it all.

Open the file in a web browser. You will see three circles. We
will use these three SVG circles to show you how selections and
data-binding in D3 work. •

Listing 1: filefragments/3LittleCircles.html.txt
<!DOCTYPE html>
<html>
<head>

<script type="text/javascript" src="lib/d3.v4.min.js">
</script>

</head>
<body>
<svg id="svg" height="100%" width="100%">

<circle cx="40" cy="60" r="10"></circle>
<circle cx="80" cy="60" r="10"></circle>
<circle cx="120" cy="60" r="10"></circle>

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 3

</svg>
<script>

// our D3 code goes here...
</script>
</body></html>

There are various ways to run D3 code. A very easy way, with
immediate results and feedback, is to interactively type the code
in the Web browsers’ javascript console (as demonstrated in class).
The disadvantage is that your changes are not saved.

Therefore, in this exercise you will type the code within the (still
empty) script tag in the html file. All the code fragments we show
in the coming pages should be entered in there, and then tried out
by saving the file and reloading it in the browser. We will not
always tell you the exact place where to enter the code, this is for
you to figure out. . . !

2.1 Using SVG for drawing

The D3 library can be used to manipulate any element within the
webpage, through the Domain Object Model (DOM). In these exer-
cise, we use it to draw graphics, therefore we need to use the graph-
ics elements within a DOM. We use the Scalable Vector Graphics
language (SVG) for this.

The SVG element can be thought of as a viewport — things within
the SVG Viewport’s dimensions are visible, things outside of the
dimensions are not. The SVG element dimensions are defined using
the attribute value pairs of "height" and "width". Note that the
top-left corner is 0,0, the x-axis is drawn left-to-right, but the y-axis
is drawn top-to-bottom.

2.2 Selecting Elements for script access to the DOM

The d3.selectAll method takes a selector string, such as "circle",
and returns a selection representing all elements that match the
selector:

var circle = d3.selectAll("circle");

The selector string will select all elements in the HTML DOM that
match it. There are several types of selector strings, that select:

• by element name; As in the case above, where we select all
elements of type “circle”: d3.selectAll("div");

• by CSS class: d3.selectAll(".shaded");

• by HTML id: d3.selectAll("#myID");

4 Dept. of Geo–Information Processing

• by combinations, e.g. selecting all div elements of class shaded:
d3.selectAll("div.shaded");

You can use selectAll() to select all elements or simply select()
to select only the first one encountered. Once we have a selection,
we can make various changes to the selected elements. For exam-
ple, we might change the fill color using selection.style and the
radius using selection.attr:

circle.style("fill", "steelblue");
circle.attr("r", 30);

If you use the three lines of code shown above, the D3 library sets
styles and attributes for all selected elements to the same values. If
you refresh the file in the browser, you will see the changes, and if
you would look at the HTML DOM in its active state (e.g. by using
the browser developer tools), you will see the SVG part has been
changed to include the style elements (style="fill:steelblue;").

We can also set all values in a selection seperately (on a per-element
basis) by using anonymous functions. Such a function (without
a name, hence the title ’anonymous’) is evaluated once for every
selected element. Anonymous functions are used extensively in D3
to compute attribute values. To set each circle’s x-coordinate to a
random value, add a line that sets the x-position (cx):

circle.attr("cx", function() { return Math.random() * 500; });

2.3 Binding Data

Of course, changing things at random is not really useful. More
commonly, we would want to use existing data to drive the ap-
pearance of our circles. Let’s say we want these circles represent
the numbers 500, 150, and 1000. The selection.data method
binds the numbers to the circles:

circle.data([500,150,1000]);

Data is specified as an array of values; this mirrors the concept of a
selection, which is an array of selected elements. In the code above,
the first number (the first datum, 500) is bound to the first circle
(the first element, based on the order in which they are defined in
the DOM), the second number is bound to the second circle, and
so on.

After data is bound, it is accessible as the first argument to the
anonymous data functions. By convention, we typically use the

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 5

name d to refer to bound data. To set the area of the circle accord-
ing to the data proportions, use the square root of the data to set
the radius:

circle.attr("r", function(d) { return Math.sqrt(d); });

There’s a second optional argument to each function you can also
use: the index of the element within its selection. The index is
often useful for positioning elements sequentially. Again, by con-
vention, this is often referred to as i. For example:

circle.attr("cx", function(d, i) {return i * 100 + 40; });

Task 2 : Now use this mechanism to change the radius and
position of the circles based on the data. •

2.4 Entering Elements automatically

What if we had four numbers to display, rather than three? We
wouldn’t have enough circles, and we would need to create more el-
ements to represent our data. You can append new nodes manually,
but a more powerful alternative is the enter selection computed by
a data join.

When joining data to elements, D3 puts any leftover data — or
equivalently “missing” elements — in the enter selection. With
only three circles, a fourth number would be put in the enter
selection, while the other three numbers are returned directly by
selection.data. By appending to the enter selection, we can
create new circles for any missing data.

Taking this to the logical extreme, then, what if we have no existing
elements, such as with an empty page? Then we’re joining data to
an empty selection, and all data ends up in enter.

This pattern is very common in D3 applications. You willl often
see the selectAll + data + enter + append methods called se-
quentially, one immediately after the other, chained together using
javascript’s so-called method chaining (the chaining together of
methods by using the . notation).

Task 3 : Change your webpage to match listing 2. As you can
see, we now start with an empty svg and create the circles fully
from the data. You now should get four circles! •

6 Dept. of Geo–Information Processing

Listing 2: filefragments/4LittleCirclesDatadriven.html.txt

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript" src="lib/d3.v4.min.js">
</script>

</head>
<body>
<svg id="svg" height="100%" width="100%">
</svg>
<script>
var svg = d3.select("svg");
svg.selectAll("circle")
.data([500, 150, 1000, 750])
.enter().append("circle")
.attr("fill", "steelblue")
.attr("cy", 60)
.attr("cx", function(d, i) { return i * 100 + 30; })
.attr("r", function(d) { return Math.sqrt(d); })

;
</script>
</body>
</html>

Note the first line of the script is now var svg = d3.select("svg");
and the d3.selectAll was replaced by svg.selectAll. This is
done to make sure the newly created circles do not just get ap-
pended to the end of the file, but are “attached” to the (until then)
empty svg element.

3 A Bar Chart of Population Data

In this section we will make a more elaborate data visualisation:
A bar chart of the population of the municipalities of Overijssel
province. We will start by looking at some D3 code that creates
a simple bar chart from data that is included in the code, in the
same way you did in the previous section:

Task 4 : Create a new webpage called BarChart.html from the
listing 3. Study the code carefully, try to understand how it works:
How the data is used to set the position of the bars, their width,
the text in the bars, and so on. . . On the next page we explain the
new elements. Experiment with changing key numbers (such as the
xScale variable) and other parts of the code to see how it influences
the visualisation. •

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 7

Listing 3: filefragments/BarChart.html.txt

<!DOCTYPE html>
<meta charset="utf-8">
<html>
<head>

<style>
.chart {

background-color: rgb(245,245,245);
padding: 5px;

}
.chart rect {

fill: steelblue;
}
.chart text {

fill: white;
font: 9px sans-serif;
text-anchor: end;

}
</style>
<script src="lib/d3.v4.min.js"></script>

</head><body>
<svg class="chart"></svg>
<script>

var data = [4, 8, 15, 16, 23, 50];
var svgwidth = 500,

barHeight = 20;
svgheight = barHeight * data.length;
var xScale = d3.scaleLinear()

.domain([0, d3.max(data)])

.range([0, svgwidth]);
var chart = d3.select("svg")

.attr("width", svgwidth)

.attr("height", svgheight)
;

var bar = chart.selectAll("g")
.data(data)
.enter().append("g")
.attr("transform", function(d, i) { →

return "translate(0," + i * →
barHeight + ")"; })

;
bar.append("rect")

.attr("width", function(d) { return xScale(d);}→
)

.attr("height", barHeight - 1)
;
bar.append("text")

.attr("x", function(d) { return xScale(d) - 3; →
})

.attr("y", barHeight / 2)

8 Dept. of Geo–Information Processing

.attr("dy", ".35em")

.text(function(d) { return d; })
;

</script>
</body>
</html>

Some elements we have not seen before are:

• the svg g element (a placeholder to group an arbitrary amount
of elements together);

• the rect and text elements, that not surprisingly create rect-
angles and texts, respectively;

• the transform attribute. This applies to a (group of) ele-
ment(s), the content of the transform string sets the actual
transformation: In this case a translate, other possibilities
are rotate and scale. In our code, the transform is used to
draw each bar at a different position, by translating along the
y-axis based on the data index.

• the code at the top (in the <style> tag). This is using the
CSS or Cascading Style Sheets language. We will not into
details on CSS in this exercise, suffice to say that it sets the
styling of the .chart class.

3.1 Using D3 data-dependent scaling

A weakness of the code above is the “’magic” number 10 to set the
xScale variable. We use it to scale width of the bars, depending
on the data value. This number depends on the domain of the data
(the minimum and maximum value, 0 and 50 respectively), and
the desired width of the chart (500 = the svg width), but of course
these dependencies are only implicit in the value 10, and if the data
changes, this numbers should also be changed.

We can make these dependencies explicit and eliminate the magic
number by using a linear scale dependent on the actual data. D3’s
linear scale specifies a mapping from data space (domain) to
display space (range):

var xScale = d3.scaleLinear()
.domain([0, d3.max(data)])
.range([0, svgwidth]);

Although xScale as before looks like a simple variable, it is now
actually a function, that returns the scaled display value in the
range for a given data value in the domain. For example, an input

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 9

value of 4 returns 40, and an input value of 16 returns 160. To
use the new scale, simply replace the hard-coded multiplication
(xScale * d) by a call to the scale function in two locations:

bar.append("rect")
.attr("width", function(d) { return xScale(d)})

and

bar.append("text")
.attr("x", function(d) { return xScale(d)- 3; })

Task 5 : To understand how this makes scaling flexible, imple-
ment the changes mentioned above and experiment with changing
the width of the SVG by changing the number in the line:

var svgwidth = 500,

Notice how the chart adapts to the width available. . . •

D3 scales can also be used to interpolate many other types of
display-space values, such as paths, color spaces and geometric
transforms.

3.2 Loading external data

Another weakness is that the data values are hard-coded in the
data array. In real-life use, we often need the data come from
some external source (a downloaded file, or a webservice, or even a
sensor device).

To use external data in a web browser, we need to download the
file from a web server and then parse it, which converts the text
of the file into usable JavaScript objects. Fortunately, D3 has
several built-in methods that do both of these things in a single
function, for several types of data. Here we will use the d3.csv
function. This is used for CSV files, that are plain text files con-
taining comma-separated values, tab-separated values or other ar-
bitrary delimiter-separated values. These tabular formats are pop-
ular with spreadsheet programs such as Microsoft Excel. Each line
represents a table row, where each row consists of multiple columns
separated by tabs. The first line is the header row and specifies the
column names.

Do not open the file from your file–system, but always from your! →
actual web site, e.g.:
http://win371.ad.utwente.nl/... or http://localhost/...
This is the only way to properly test your web site!

10 Dept. of Geo–Information Processing

The reason is that browsers are strict on so–called JavaScript cross–
domain security, meaning it won’t run JavaScript that is not coming
from the same server as the html. And from the browser viewpoint,
a file coming from file:/// is from another domain than one from
http://win371.ad.utwente.nl/, even if these point to the same
file. . . ! Also, the security mechanism usually does not allow load-
ing from harddisk (such as file:///C:) anyway, although some-
times you can override this, e.g. in FireFox. So to do the latter
part of the exercises, you need to serve the files through a web-
server. All this is also explained at the D3 site (with some tips on
how to install a localhost server) at: https://github.com/d3/d3/
wiki#local-development An alternative is using local server in
Python see: http://stackoverflow.com/questions/27977972/
how-do-i-setup-a-local-http-server-using-python.

Loading data introduces a new complexity: downloads are asyn-
chronous. After you call the d3.csv function, it returns immedi-
ately while the file downloads in the background. At some point
in the future when the download finishes, the so-called callback
function is invoked: That function is defined by the second argu-
ment of the d3.csv function, in most cases by creating another one
of those anonymous function calls we used before:

d3.csv("myDatFile.csv", function(error, data) {
// Code here is the callback function...!
// inside it you have access to the loaded data object
// or the error codes when unsuccesful
});

Therefore we need to be sure that any code that needs the data
(which in our case is actually all of the code), is inside the callback
function, so that it waits to run until after all data has been loaded.
In order to achieve that, let’s “wrap” our existing code inside the
d3.csv function:

Task 6 : Create a copy of the HTML webpage BarChart.html
you made before, and call it BarChartOverijssel.html.

Replace the line:
var data = [4, 8, 15, 16, 23, 50];
with the lines:

d3.csv("overijssel_population.csv",
function(error, data) {
//start of callback function:

And after the last line of the code (just before the </script> state-
ment), add the proper closing of the callback function and d3.csv

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 11

https://github.com/d3/d3/wiki#local-development
https://github.com/d3/d3/wiki#local-development
http://stackoverflow.com/questions/27977972/how-do-i-setup-a-local-http-server-using-python
http://stackoverflow.com/questions/27977972/how-do-i-setup-a-local-http-server-using-python

method:
}); //end of callback function •

If you now run the code in your browser, you will get no result, and
several error messages in the Javascript console, such as: “Invalid
value for <rect> attribute width=’NaN”’. So, what is wrong? Now
that our dataset contains more than just a simple array of num-
bers, each data instance is a complex object rather than a single
number. The equivalent representation in JavaScript would look
not like a simple array, but like this:

var data = [
{gm_code: "GM0141", gm_naam: "Almelo", aant_inw: "72730"},
{gm_code: "GM0180", gm_naam: "Staphorst", aant_inw: "16275"},
...etc..
];

If you study this, you can see the data object is an array (delimited
by []) of several objects (delimited by { }) , in each of which
gm_code is the code for the municipality (gemeente), gm_naam is its
name and aant_inw is the number of inhabitants.

Thus, if we want to read a data value for number of inhabitants,
we must refer to the value as d.aant_inw rather than just d. So,
whereas before we could pass the scale xScale(d) to compute the
width of the bar, we must now specify the correct data value to the
scale: xScale(+d.aant_inw)

Likewise, when computing the maximum value from our dataset
in our xScale function, we must pass an anonymous function to
d3.max that tells it which data variable to use to determine the
maximum:

var xScale = d3.scaleLinear()
.domain([0, d3.max(data, function(d) {
return +d.aant_inw;
})])

.range([0, svgwidth])
;

In the code examples above, note the use of xScale(+d.aant_inw),! →
instead of just xScale(d.aant_inw). This a way to overcome the
problem that Javascript has no strict typing. Thus, if the variable
d.aant_inw is read, we can not be sure it is treated as a number,
or maybe as a string. To enforce the treatment of the variable as a
number, we “add it to nothing” (by prefixing it with the plus sign).

12 Dept. of Geo–Information Processing

Task 7 : Repair the use of the d value to match the data-
structure, as explained above. Test again to see if you now get the
correct bar chart for all Overijssel municipalities. •

3.3 Adding an Axis

Task 8 : The next task is to create a D3 axis. Below we mention
the building blocks needed, you should figure out yourself where
these should be placed, and test the results in your browser. The
final axis should look like the figure below. . . •

D3 has a powerful mechanism to add axes to graphs, charts and
maps. We define an axis by telling it to use a scale and declaring one
of the four orientations. If your axis should appear below the bars,
you use the axisBottom(scale) function (the other possibilities
are, not surprisingly, axisTop, axisLeft and axisRight).

var theAxis = d3.axisBottom(xScale);

The resulting object (here named theAxis) can be used to ren-
der multiple axes by repeated application using selection.call().
Think of it as a rubber stamp which can print out axes wherever
they are needed. The axis elements are positioned relative to a
local origin, so to transform into the desired position we set the
"transform" attribute on a containing g element.

chart.append("g")
.attr("class", "axis")
.attr("transform", "translate(x, y)"
.call(theAxis);

The axis container should also have a class name so that we can
apply styles. The name "axis" is arbitrary; call it whatever you
like. The axis component consists of a path element which displays
the domain, and multiple g ".tick" elements for each tick mark. A
tick in turn contains a text label and a line mark. Most of D3’s
examples therefore use the following minimalist style in CSS:

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 13

.axis text {
font: 9px sans-serif;
fill: black;

}
.axis path,
.axis line {
fill: none;
stroke: black;

}

You will also need to make room for the axis below the graph. To
do that, you’ll have to make the svg height bigger then the height
needed for the chart bars alone!

4 Using D3 for maps

In many ways, a map is just another data-driven graphic. So, of
course D3 can also be used to create maps. We will use a geosjon
file to load a map of the same Overijssel municipalities we have used
above. The data was created using the export to geojson option
in QGIS, such possibilities are available in most GIS software, or
from web services such as the one at http://www.mapshaper.org/

4.1 Visualising Geographic Data

Task 9 : Create a webpage using the code in listing 4. Test
it, you should see a basic map, of the municipalities of Overijssel
province.

Study the code to see how the map was made using techniques very
similar to the BarChart examples before. . . •

Listing 4: filefragments/Map.html.txt
<!DOCTYPE html>
<meta charset="utf-8">
<html><head><title>The Graphic Web Locations</title>
<script src="./lib/d3.v4.min.js"></script>
<style>
.mapSVG {
background-color: rgb(245,245,245);

}
.municipality {
fill: rgb(255,240,214);
stroke: rgb(255,159,227);

}
</style>

14 Dept. of Geo–Information Processing

http://www.mapshaper.org/

</head><body>
<div id="mapDiv"></div>
<script>
var mapWidth = 400, mapHeight = 350;
var mapDiv, mapSVG, svgpath;
// select the mapDiv by id:
mapDiv = d3.select("#mapDiv");
// create an svg of fixed size:
mapSVG = mapDiv.append("svg")

.attr("class", "mapSVG")

.attr("width", mapWidth)

.attr("height", mapHeight)
;
// Define Mercator proj to center at data (lon-lat):
var myProj = d3.geoMercator()

.center([6.0 , 52.5])

.scale(10000)

.translate([mapWidth / 2, mapHeight / 2])
;
//Define svg path generator using the projection
svgpath = d3.geoPath().projection(myProj);
// asynchronously load geojson:
d3.json("overijssel.json", function (error, myGeoJson) {

// create new svg paths:
mapSVG.selectAll("path")

// bind the data:
.data(myGeoJson.features).enter()

// for each d create a path:
.append("path")
.attr("class", "municipality")
.attr("d", svgpath)

;
});
</script>
</body></html>

You should have encountered only a few D3 functions and methods
that we did not use before. First of all a projection object:

var myProj = d3.geoMercator()
.center([6.0 , 52.5])
.scale(10000)
.translate([mapWidth / 2, mapHeight / 2])

;

D3 has a lot of functionality to use geographic data, i.e. data that
is expressed as coordinate pairs in longitude and latitude.

Here we use the d3.geoMercator() function that is a so-called
factory to turn lon-lat coordinate pairs into cartesian projected

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 15

coordinates, using the Mercator projection. To specify the projec-
tion, here we use the .center, .scale and .translate methods of
this projection object to zoom into the Overijssel area. There are
a multitude of available projections, see https://github.com/d3/
d3/blob/master/API.md#geographies-d3-geo for examples and
explanation.

The projection factory is used in turn in another very useful method
called d3.geoPath(). This takes a stream of real-world coordinates
and transforms them into an SVG drawing path that uses screen
coordinates to fit into an SVG object on the webpage:

svgpath = d3.geoPath().projection(myProj);

This is then used in the statement .attr("d", svgpath) to load,
project and draw the coordinates of each municipality from the
dataset.

Task 10 : The map does not really fit nicely in the div. Exper-
iment with the projection settings to make the map fit better (as
in the figure left). •

The dataset was loaded in the line

d3.json("overijssel.json", function (error, myGeoJson) {

which works exactly as the d3.csv method we used earlier, but
now for geoJSON data. This is a special version of the general
JSON format (JavaScript Object Notation). It can be created by
exporting data from many GIS systems, as well as using on-line
tools such as http://www.mapshaper.org/.

The format of geoJSON is standardised (see http://geojson.org/),
but the standard allows for several ways to structure the data,
therefore it is sometimes tricky to find the proper objects to ad-
dress. In most cases there is a top-level GeoJSON object with
the type FeatureCollection , that has a member with the name
features. The value of features is a JSON array, and each el-
ement of the array is a Feature object which in turn will have
properties, of which one is a geometry.

In the case of our Overijssel data this looks as follows:

{"type":"FeatureCollection",
"features":
[{"type":"Feature", "properties":
{"gid":7, "gm_naam":"Almelo","aant_inw":72730 ...etc... },
"geometry":{"type":"Polygon","coordinates":

16 Dept. of Geo–Information Processing

https://github.com/d3/d3/blob/master/API.md#geographies-d3-geo
https://github.com/d3/d3/blob/master/API.md#geographies-d3-geo
http://www.mapshaper.org/
http://geojson.org/

[[[6.69863498963163,52.39374126373987], ...etc...

The array of features is similar to the array of data objects we used
in the CSV solution, therefore to bind to it we use the line:

.data(myGeoJson.features).enter()

The d3.geoPath function is smart enough to be able to extract the
needed geometry objects from this array by itself. . .

To get to the other elements of the data, you address sub-objects
of the features elements, such as d.properties.aant_inw for the
number of inhabitants data.

4.2 Thematic Maps

Just like in the bar chart example, you can of course use the prop-
erties in the data files to create data-driven visualisations using
the SVG drawing possibilities. For example, you can create an ex-
tra layer on top of the municipalities to draw circles of different
sizes, depending on a data property. Thus, you create a so-called
proportional point symbol map with the code fragment below:

Listing 5: filefragments/MapProportionalFragment.html.txt
//add this to the CSS style section:

.propCircle {
fill: rgb(255,0,0);
opacity: 0.5;

}

// create new svg circles:
mapSVG.selectAll("circle")

// bind the data:
.data(myGeoJson.features).enter()
// for each d create a circle:
.append("circle")
.attr("class", "propCircle")
.attr("cx", function (d) {

// calculates centroid X of geo path :
return Math.round(svgpath.centroid(d)[0]);

})
.attr("cy", function (d) {

// calculates centroid Y of geo path:
return Math.round(svgpath.centroid(d)[1]);

})
.attr("r", function (d) {
// set r to be using some data value instead of 50:
return 50;

})

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 17

;

Task 11 : Insert the code in listing 5 into the code you used in
the previous task. You should figure out yourself:

• where to insert the code fragments, and

• how to use the data value for “number of inhabitants” (aant_inw)
to properly scale the circles;

To refine your visualisation, experiment with the CSS settings and
with the ratio used in the code that determines the circle radius. . . .

•

18 Dept. of Geo–Information Processing

5 CHALLENGE: Interactively Linking Map and Chart

As an optional challenge, we ask you to create some interactivity
for the bar chart:

Task 12 : The optional challenge task is to create the following:

• A webpage that holds both the Overijssel Bar chart and the
municipal Proportional Point Symbol map;

• If the user moves the mouse over a bar in the graph, the bar
colour changes to red, and the corresponding municipality in
the map is highlighted.

Below we show some of the building blocks needed, you should
figure the rest out yourself, and test the results in your browser. . . •

In order to place the graph and map next to each other, you can
use different lay-out possibilities. The simplest way of doing that
is styling the HTML <div> element we use to hold the map. You
can change the creation of the mapDiv we used in the map page,
from:

mapDiv = d3.select("#mapDiv");

to:

mapDiv = d3.select("#mapDiv")
.style("position", position type)
.style("left", X in pixels)
.style("top", Y in pixels)

;

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 19

The style properties are expressed using CSS (Cascading Style
Sheets), the styling language standardised by the W3C, the World
Wide Web Consortium. The meaning of the properties used is:

position: this lets you define positioning absolute or relative to other
divs.

left & top: the (absolute or relative) location with respect to the upper
left corner of the window

width & height: the size of the element (in pixels)

overflow: if the content is larger than fits the div, it will not be shown
if this is set to hidden. Other settings are visible (will over-
flow), scroll (will make scrollbars) and auto (let browser de-
cide).

border: the border look (width, type and colour). You can also set
the fill in a similar way.

As an alternative to creating the style using D3 selectors, you can
of course also use a CSS definition for this and create a classed div
using .attr("class", "cssname"). . .

Interactivity is triggered by an event connected to the appropriate
selection. D3 supports interactivity of all its selections, by the use
of selection.on. This adds an event listener to each element in
the current selection, for the specified type. The type is a string
event type name, such as "click", "mouseover", "mouseout", or
"submit". Any DOM event type supported by your browser may
be used. The specified listener is invoked in the same manner as
any other operator functions, being passed the current datum d
and index i, with the this context as the current DOM element,
in such a way:

selectedObject
.on("mouseover", function(d, i) {
... code run per data instance ...
... e.g. to show information ...
... and to change bar colour ...
})
;

The interactivity can of course be improved by having the reverse
highlighting also working (mouse in map highlights bar), by having
the data displayed, etcetera. We will add a working example to
your learning platform (e.g. Blackboard) towards the end of the
exercise.

Happy puzzling. . . !

20 Dept. of Geo–Information Processing

6 Links & References

For this exercise we used existing materials from various sources,
that we also recommend to you for learning D3:

• The book “D3.js in Action” (2015) – Elijah Meeks, Manning
Publication co. (New York). ISBN: 9781617292118 (in ITC
library);

• The D3 website at http://d3js.org/, with the official API
documentation and many D3 Examples and tutorials;

• The first section of this exercise was based on the 3 Little
Circles tutorial at http://bost.ocks.org/mike/circles/.

• A useful reference for the JavaScript Language in general can
be found at http://www.w3schools.com/jsref/default.asp.

© ITC–University of Twente, Faculty of Geo–Information Science and Earth Observation 21

http://d3js.org/
http://bost.ocks.org/mike/circles/
http://www.w3schools.com/jsref/default.asp

	1 Introduction
	2 Three little circles – a first attempt at D3
	2.1 Using SVG for drawing
	2.2 Selecting Elements for script access to the DOM
	2.3 Binding Data
	2.4 Entering Elements automatically

	3 A Bar Chart of Population Data
	3.1 Using D3 data-dependent scaling
	3.2 Loading external data
	3.3 Adding an Axis

	4 Using D3 for maps
	4.1 Visualising Geographic Data
	4.2 Thematic Maps

	5 CHALLENGE: Interactively Linking Map and Chart
	6 Links & References

