
Visualizing Time Series Data Using
Web Map Service Time Dimension

and SVG Interactive Animation

Timothée Becker

February, 2009

Visualizing Time Series Data Using Web Map
Service Time Dimension and SVG Interactive

Animation

by

Timothée Becker

Thesis submitted to the International Institute for Geo-information Science and
Earth Observation in partial fulfilment of the requirements for the degree in
Master of Science in Geoinformatics.

Degree Assessment Board

Thesis advisor B.J. Köbben MSc and Ms Dr. C.A. Blok

Thesis examiners Chair: Prof. Dr. M.J. Kraak (RTL), External examiner: Dr. G. Andrienko

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

ENSCHEDE, THE NETHERLANDS

Disclaimer

This document describes work undertaken as part of a programme of study at
the International Institute for Geo-information Science and Earth Observation
(ITC). All views and opinions expressed therein remain the sole responsibility
of the author, and do not necessarily represent those of the institute.

Abstract

The constant increase in number and size of spatio-temporal (ST) data-
sets is challenging researchers to develop effective means for visually ex-
ploring and presenting the information they contain. Within the fields
of Geovisualization and Exploratory Data Analysis, interactive animated
maps have been pointed out as the only generic technique available to
explore large ST datasets. They provide a complete view of the dynamic
process under study, and often help to reveal its (subtle) spatio-temporal
patterns. To become more broadly used, interactive vector animated maps
must become less time-consuming to make and easier to disseminate. In-
ternet technologies offer two big advantages in this direction: the possi-
bility for interoperable distributed services and the ease of disseminating
animations to specialists and wider audiences world-wide. With the global
aim of improving vector animated mapping possibilities, the main objective
of this research is to look into the possibility of combining two technologies
that have never been combined before: animated and interactive vector
graphics for the internet and distributed geo services. We adopt OGC’s
Web Map Service (WMS) framework for distributed services and Scalable
Vector Graphics (SVG) to produce interactive animated maps that can be
viewed in a Web browser. After determining what needs to be done to gen-
erate temporal animations from data stored according to WMS’ recommen-
dations, we designed and implemented an animated mapping prototype
for exploring moving object dynamics with a case-study on iceberg dynam-
ics. We base our design on reviews of animated mapping, moving object
visualization and iceberg literature. As a result we present the TimeMap-
perWMS prototype which offers users worldwide the possibility to visual-
ize the dynamics inherent to the thirty-three year Antarctic Iceberg time-
series dataset. The most important visualization functionalities offered
are a mechanism to select the temporal extent of the animations, tempo-
ral legends, a time-slider and speed control. Different animation types are
destined to explore the changes in the iceberg population’s distribution and
the motion dynamics of individual as well as groups of icebergs.

Keywords
WMS time, Animated mapping, animated map, vector animation, time-
series, spatio-temporal data, geovisualization, time-slider, moving object,
interpolation, icebergs

i

Abstract

ii

Acknowledgements

I want to thank the following people back home: my parents, for their constant and un-
conditional support throughout my whole studies, David Chaille for the life-long lesson
he taught me of how to organise my days of work – perhaps next time he can teach me
to organise the months :), my brother Thomas for his support and patience, Ronny and
Lena Moser and Daniel Leuenberger for their friendship and their so appreciated visit.

At ITC, I want to thank the following people: my supervisors, Barend Köbben and
Dr. Connie Blok as well as Professor Menno Jan Kraak: Mr Köbben, for proposing such
an exciting topic, for his guidance, his amazing patience and his hard work, Professor
Kraak and Mrs Blok for their guidance, for always reminding me the academic require-
ments of an MSc research, for their valuable comments and for trying to make me stick
to a schedule, Dita Anggraeni for all her help and her support, Clarisse Kagoyire for her
support and her seemingly endless generosity, my classmate and friend Hoa Nguyen
Thi Phuong for sharing the result of her work on iceberg data with me, Dr. Javier
Morales for his help on the Unified Process, Dr. Rolf de By for his support with Latex
and for designing the most challenging project of all teaching modules, the ITC and
ITC Hotel staff for their amazing welcome and kindness, and finally, the entire ITC
community, friends and cheerful faces, for making this experience unique, warm and
delightful.

I also want to thank Erik Dahlström for his support as well as many members of
the SVG community for their willingness to share their knowledge and code.

iii

Acknowledgements

iv

Contents

Abstract i

Acknowledgements iii

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement and objectives 3
1.3 Research steps and research questions 5
1.4 Methods . 7
1.5 Thesis structure . 8

2 Temporal animated maps: principles and recommendations 9
2.1 Introduction . 9
2.2 Geovisualization and Exploratory Data Analysis as background 10
2.3 Conceptual framework for space-time phenomena 11

2.3.1 Time as a dimension: the Where – What – When triad . . 11
2.3.2 Exploratory task-levels focusing on time 12
2.3.3 Two types of time: linear and cyclic 13

2.4 Describing dynamics : types of change, behaviors and patterns . 13
2.4.1 Types of change . 13
2.4.2 Spatio-temporal behaviors and patterns 13

2.5 Principle of temporal animated mapping 15
2.5.1 Basic principle of animations 15
2.5.2 Basic characteristics: temporal scale and resolution . . . 15
2.5.3 Basic needs for animated mapping 16

2.6 Suitability and advantages of animated maps 17
2.6.1 Suitability of animated maps for spatial dynamics 17
2.6.2 Advantages of animated maps for spatial dynamics . . . 18

2.7 Perceptive and cognitive limitations of animated maps 19
2.7.1 Cognitive Load Theory for exploratory mapping 21

2.8 Design requirements and recommendations for animated maps 21
2.8.1 Rules transferred from static on-screen mapping 22
2.8.2 Temporal legends . 23

v

Contents

2.8.3 Interactive control of display time 25
2.8.4 Solutions to the split-attention effect 26
2.8.5 Zooming and temporal focusing 27
2.8.6 Controlling the temporal scale/speed 28
2.8.7 Emphasizing change: smoothness, saccades and dynamic

variables . 28
2.8.8 Complementarity of small-multiples and alternative views 29

2.9 Conclusion . 30

3 Technical choices: WMS, SVG and RIMapperWMS 31
3.1 Introduction . 31
3.2 Why OGC’s WMS as distributed GIService? 32

3.2.1 Web Map Service in a nutshell 32
3.2.2 WMS support and format for the Time dimension 34

3.3 Why choose SVG as a vector graphics format? 36
3.4 Interactivity and animation in SVG 39

3.4.1 Short introduction to SVG’s syntax 39
3.4.2 Scripting interactivity and animations 40
3.4.3 SVG and SMIL animation 41

3.5 Compatibility between the WMS and SVG specifications 44
3.6 Choosing a platform to extend: RIMapperWMS 45
3.7 Conclusion . 46

4 Moving objects visualization and iceberg use-case analysis 49
4.1 Towards a visualization environment for moving objects 49
4.2 Conceptual framework for moving object data 50

4.2.1 Conceptualizing object dynamics 50
4.2.2 Pattern types for moving object phenomena 52
4.2.3 Visual techniques for movement, and data reduction . . 54

4.3 Case-study: Antarctic Iceberg movement visualization 54
4.3.1 Iceberg formation and fields of application 54
4.3.2 The NIC Antarctic Iceberg dataset 55
4.3.3 Iceberg-visualization tasks using animation 58

4.4 Analysis of Iceberg visualization use-case 62
4.5 Summary . 65

5 Animated mapping visualization system design 67
5.1 Introduction . 67
5.2 Visualization options offered to the user 68
5.3 Description of visualization functionalities 69

5.3.1 Generic functionalities for animated mapping 70
5.3.2 Moving object specific functionalities 72
5.3.3 Iceberg specific visualization components 74

5.4 How should the data be stored, converted and retrieved? 75
5.4.1 Storage of spatio-temporal data 75
5.4.2 Steps to convert the time component of the data 76
5.4.3 The need for a temporal intersect 78

vi

Contents

5.4.4 Integration of additional georeferenced products 80
5.5 High level system structure . 80

5.5.1 Conceptual representation of the system 81
5.5.2 RIMapperWMS’ present structure 81
5.5.3 Extending the structure: the birth of TimeMapperWMS 83

5.6 The actual GetCapabilities and GetMaps: requests and responses 84
5.7 Summary . 86

6 TimeMapperWMS prototype implementation 87
6.1 Introduction . 87
6.2 Populating the database . 87
6.3 Client-side visualization functionalities 88

6.3.1 Building animation behavior 88
6.3.2 Building temporal legends 91
6.3.3 Controlling time: time-slider and other functionalities . 92
6.3.4 Providing visualization options to the user 93

6.4 Serializing: generating interactive animated maps 94
6.4.1 Querying the database . 94
6.4.2 Building animations from the data and storing time-stamp

variables . 94
6.5 Setting the temporal scale: a functionality that binds all 96

6.5.1 Setting the value of the temporal scale 96
6.5.2 Setting the start-times and durations of the animations 97

6.6 Integrating WMS map backgrounds and additional data 98
6.7 State of the implementation . 98

7 Results, testing and evaluation 99
7.1 Introduction . 99
7.2 System testing: functionality and limitations 100

7.2.1 How well do the prototype’s functionalities work? 100
7.2.2 Solutions to improve responsiveness 100

7.3 Evaluating the generic interactive functionalities 101
7.4 Evaluating animation types for moving-object visualization . . 105
7.5 Using the system for other datasets and extending its capabilities 106

8 Conclusion and recommendations 107
8.1 Combining distributed services and vector animation 107
8.2 Designing a visualization environment for iceberg dynamics . . 108
8.3 Implementation of the TimeMapper prototype 109
8.4 Results and system evaluation 109
8.5 Recommendations . 110

A Scenario to introduce the three basic needs in animated map-
ping 113

B Explanations on Köbben’s SVG scripted animations 115

C Example of periodicity in an MCB visualization 117

vii

Contents

D SVG and JavaScript code 119
D.1 Introduction . 119
D.2 Interpolated iceberg tracks . 119
D.3 Animating attribute changes . 120
D.4 Linear temporal legend . 121
D.5 Pie-portion cyclic temporal legend 121

Bibliography 123

viii

List of Tables

2.1 Tasks focusing on when . 12

3.1 Symbols for time periods . 35
3.2 GetMap request parameters . 36

ix

List of Tables

x

List of Figures

1.1 Making use of generically applicable principles and technologies 4
1.2 Methodology of the research . 7
1.3 Five core workflows of the Unified Process 8

2.1 The Where – When – What triad 11
2.2 Three types of temporal legends. 23

3.1 Three-tier basic WMS setup . 33
3.2 Simple SVG graphics example . 41
3.3 Example of the power of SMIL for morphed animations (from [55]) 42

4.1 Individual movement behavior and Momentary collective behavior 51
4.2 Iceberg identification from satellite images 56
4.3 Map of Antarctica . 56
4.4 Use-cases for iceberg visualization 62

5.1 Projected user interface for animated mapping environment . . 69
5.2 Four designs of cyclic temporal legends 70
5.3 OGC-compliant database schema 77
5.4 Time conversion steps . 77
5.5 The need for a temporal intersect 78
5.6 Applying a temporal intersect to spatio-temporal data 79
5.7 Three-tier architecture: Web-client-map server-database 80
5.8 Extending the structure of RIMapper 82

6.1 Serialization of animations, storing variables and setting anima-
tion speed . 95

6.2 Offering the user flexibility in temporal scale settings 97

7.1 The TimeMapperWMS prototype 103
7.2 Motion dynamics visualization 103
7.3 The ‘small pie’ cyclic temporal legend 104
7.4 Moving cluster pattern . 104

C.1 MCB-based visualization of bird migration speeds 117

xi

List of Figures

xii

Chapter 1

Introduction

1.1 Motivation

The need felt by cartographers to represent time along with their spatial de-
pictions is hundreds or even thousands of years old [28]. Until the advent
of more modern techniques, the use of graphical symbolizations was used to
represent movement or change. We can for example state the use of simple
symbols such as arrows to represent movement or of more complex depictions
such as Minard’s famous map. However, the on-going increase in capacity to
record spatio-temporal information provided by modern technology (especially
GPS and satellite-born remote sensing) has been propelling the development of
new visualization techniques and tools.

Among other techniques, such as small-multiples, maps embedded with time-
plots of attribute values, and the space-time cube, map animation is one of
the techniques used in Geovisualization to explore and present spatio-temporal
phenomena. It is believed to have a series of advantages among which we will
present the following subset: Because the graphical depictions can be made to
look like real-world states and because display-time is used to represent the
passage or real-world time, animated maps (AM) offer an intuitive, easily un-
derstandable representation of real-world phenomena [13]. According to An-
drienko and Andrienko [4], it is the only generically usable technique capable
of offering overviews of spatio-temporal datasets with wide ranges of tempo-
ral values.1 Animated maps in effect, especially when supplied with temporal
legends, enable one to view information in its temporal context. The most fre-
quently stated advantage of animated maps is probably their ability to help
detect (possibly subtle) spatio-temporal patterns [30]. These advantages and
a few more result in a wide range of application domains for animated maps.
Harrower and Fabrikant [30] state that“the use of animated maps spans the
spectrum of disseminating spatial knowledge to a wide audience (. . .) to data
exploration” by experts using “highly interactive (. . .) tools.”

1Some of the other techniques can be used for certain data types but none except animation
can be used for all.

1

1.1. Motivation

Despite this wide range of potential applications, a fairly small number of ani-
mated maps are presently being disseminated. The recent development of kml
animations for Google Earth did however make this number increase. Har-
rower [28] predicts that the place where animated maps could be disseminated
in large numbers is the internet and that if such an increase happens, it will
follow the advent of “on-demand” animated mapping systems.

Animated mapping facilities are better developed for raster georeferenced im-
ages than they are for vector graphics and data.2 For advanced forms of vector
animation (i.e., involving some interpolation), programming or scripting is nec-
essary: the “appearance of animated objects (. . .) can be rendered “on the fly”
by the computer, which decodes and visually renders these vector-based ani-
mations” [28]. In the present thesis, we will be looking into vector graphics
animations for the internet.

While some vector animation platforms exist, like ArcGIS or Tempest [19]3,
they are characterized by three big deficiencies: the impossibility to publish the
animations on the internet, a low level of interactivity4 and, the absence of a
feature to produce interpolated animations. Because of the latter, it depends
on the data, for the animations to appear smooth. Because animated map-
ping platforms do not produce internet-publishable outputs, the most broadly
adopted platform to build vector animated Web maps is Adobe Flash.5 This is
often done in a graphics-only setup which is very laborsome.

For animated mapping like for any vector GIS task, it is obviously an advantage
of having the graphics hooked onto a database. The vector graphics can be
animated using spatial and object attributes along with a temporal attribute.
Such a setup offers to animated mapping the generic advantages of database
management systems: flexibility, reusability, data integrity, data consistency,
enhanced security, access for multiple users in multiple locations, possibly at
the same time.

Besides broad dissemination possibilities, animated mapping can benefit from
internet services by being integrated into distributed services. Interoperability
and distributed services is a clear trend that today’s Geographic Information
Science (GIS) is taking [24]. The advantages of distributed services for ani-
mated mapping platforms partly descend from the qualities of database man-
agement systems (DBMS). A second set of more specific advantages result from
the interoperability of standardized Geo Web Services.

Standards for interoperability proposed by distributed frameworks such as the
Open Geospatial Consortium (OGC) offer advantages for data sharing, for com-

2The reason is that a time-series set of raster images covering the same region can easily be
played in a rapid sequence. However, because of the heaviness of raster images, of the limited
power of computers and bands of networks, good quality and long time-series of raster anima-
tions are still difficult to disseminate on the internet and are devoid of high level interactive
control even when running on stand-alone computers.

3Google Earth is not an animated mapping platform. The animations need to be scripted.
4This is even truer about raster animations.
5See [27] as an example.

2

Chapter 1. Introduction

bining software components and for overlaying graphical outputs from differ-
ent sources. As a result, with a minimum need for adapting data products and
software components to each other, distributed services offer the possibility to
overlay image products coming from multiple datastores and processed by mul-
tiple map server software (potentially all physically in different locations). This
series of advantages cause distributed services to be “widely accepted in gov-
ernmental agencies and educational institutions” as well as by “geospatial data
producers, users, GIS vendors, and GIS professionals” [64].

As already said, animated maps are used to explore and present real-world pro-
cesses. In many cases, geovisualization specialist are interested in explaining
the dynamics present in these processes by relating them to other phenomena.
Interesting geovisual work could result from the overlay of multiple dynamic
phenomena or of a dynamic phenomenon with static map layers.

Many authors have stated the need for interactivity in animated mapping (for
reviews and further references, see [30, 72]). This need for interactivity is
rooted in perceptive and cognitive limitations of human users: due to the fugi-
tive characteristics of the information displayed, animated map users tend to
have trouble perceiving changes, and remembering them for long enough to
make sense of them. Because of these perceptive and cognitive limitations,
animated map theorists and designers recommend a series of design rules.
Along with simplifying graphical depictions, providing the user with control
over the amount of information displayed is the most often recommended so-
lution [30, 72]. Through interactivity, the user must be able to control the
animation in a way that enables him to grasp the changes occurring and re-
member them. For various Geovisualization purposes, interactive time-sliders
are increasingly often being provided [19, 25]. We will see that they offer a very
powerful and flexible way of browsing the data.

1.2 Problem statement and objectives

In summary, we have established that animated mapping could benefit from
the binding of vector graphics to a database and from being integrated within a
distributed services framework. In addition, the most promising way to dissem-
inate animated maps is via the internet. The deficiencies of existing animated
mapping platforms are important. Apart from the fact that none functions in
a distributed services architecture, these platforms are characterized by (a) the
impossibility to publish vector animations on the internet, and either one or
the other of the following: (b) a low level of interactivity and (c) the absence of
mechanisms capable of rendering interpolated spatio-temporal states.

With the global aim of improving animated mapping possibilities, the main
objective of this research is to look into possibilities, both from theoretical and
practical perspectives, of combining two technologies that have never been com-
bined before: animatable and interactively controllable vector graphics formats
for the internet and distributed geo services. At a theoretical level, we will

3

1.2. Problem statement and objectives

study the specifications of existing technologies and at a practical level, we will
attempt to develop a prototype animated mapping system using these technolo-
gies. We hope to adopt solutions that could serve both exploratory and Web
presentation purposes. At a functionality design level, we intend to follow rec-
ommendations found in literature on animated mapping to instruct the design
of state-of-the-art animation and interactive functions.

With the limited time at disposal, we cannot expect to develop a complete an-
imated mapping application. Thus, with the intention of developing solely a
prototype, we need to restrict the set of functionalities to provide. The complete-
ness of an animated mapping platform can be considered from three different
perspectives all related to how the platform satisfies user requirements. (1) It
can produce different types of animations: stepwise animations, interpolated
animations, brushed animations, lagged animations, etc. . . (2) It can be used
to visualize different types of real world phenomena (e.g., moving object data,
political census data, health statistics . . .) and different types of data (point
data, line, polygon). (3) It can be used for different types of tasks going from
exploration to presentation to the general public.

We will restrict ourselves in the design and implementation phases by making
selections from all three of these perspectives. Firstly, we decided to develop an
environment for moving object visualization. The second restriction happened
as a result of a very interesting case-study dataset being offered to us, i.e., the
NIC’s Antarctic Icebergs dataset [49]. This dataset seemed more appropriate,

Figure 1.1: The principles and technologies that will be used to develop the prototype could
serve to develop a generic animated mapping platform.

in a first stage, for phenomenon exploration than for presentation. Thirdly, by
studying iceberg dynamics in literature, we intend to come up with what we
will judge to be the most useful animation and interactive control functionali-
ties and to propose an iceberg dynamics visualization prototype environment.
This progressive focusing towards a visualization environment of a size that we
can hope to design and implement is illustrated in figure 1.1 and particularly
represented by the flow direction of the blue arrow. The design of the anima-
tion and interactivity features that we intend to develop will be informed by a
review of animated mapping literature and visualization concepts for moving

4

Chapter 1. Introduction

objects data as well as by our analysis of the use-case on iceberg movement.
The purple arrow shows that the prototype developed can be considered, if we
may say so, as the tip of the iceberg of a generic animated mapping system that
could be developed using the same principles, the same architecture and the
same set of technologies.

1.3 Research steps and research questions

To attain the aforementioned objectives, knowledge needs to be gained, choices
need to be made and problems need to be solved on a variety of topics. The
following research questions, grouped by theme, will guide us through our re-
search.

On animated mapping

After setting a theoretical background for animated mapping within the broader
field of Geovisualization, we intend to discover the principles, applications and
requirements for animated vector mapping. How do animated maps work?
What visualization tasks are they useful for or what are their advantages?
On the other hand, what are their limitations? Fond of their knowledge and
experience, what do animated mapping theorist and designers preconize or rec-
ommend for developing effective geovisualizations using animation?

On technical choices

OGC is the official body for standardization and interoperability of distributed
geo Web services and their specification for visual products is Web Map Service
(WMS). We intend first to verify that OGC’s WMS is indeed the best framework
to adopt for our purpose. Preliminary research showed that the WMS imple-
mentation specification contains a recommendation for the storage and sharing
of temporal components. We will try and determine from a theoretical point of
view, whether the WMS specification for storage and sharing of time is suitable
for our purpose.

In our research for a vector graphics format that could be used to animate and
interactively control the temporal dimension of animations as well as be pub-
lished via the internet, Adobe Flash and the W3C’s Scalable Vector Graphic (SVG)
were identified as the main competitors. We will show why we choose SVG
rather than Flash. What are the advantages and limitations of SVG in gen-
eral? What is its structure? How well documented is it? How well can it be
bound to a database? Further, what are its specific advantages for animated
mapping? How does SVG handle the temporal aspect of its animations and
how flexible is to develop different types of animations?

5

1.3. Research steps and research questions

Once these questions on the main technology components have been answered,
we will try and determine how well the two technologies can be combined from a
theoretical or specification point of view. Can we expect them to be compatible?
In particular, does the way in which WMS recommends to store time and the
way SVG designs usage of time seem to fit together well?

As we cannot expect to develop a complete animated mapping prototype for
moving objects following the WMS framework, we hope to find an existing im-
plementation that we could extend. What are the already existing WMS pack-
ages that we could extend to yield SVG interactive animated maps? Further, if
such a package exists, what needs to be done to extend it?

On moving object visualization and iceberg dynamics

In our attempt to develop a visualization environment for moving objects, we
need to develop an approach to understand the phenomena at hand. How can
movement of objects be conceptualized? What kinds of patterns can we expect
to find in such movement data? Which types of behaviors can be observed using
animated maps and which of the pattern types that can be found in movement
data can they help to detect?

After presenting general knowledge on icebergs and our specific dataset, we
will attempt to answer specific questions about iceberg dynamics exploration.
What iceberg visualization tasks can we hope to successfully apply animation
to? Is it suited to assess the evolution of the distribution of icebergs through
time? Can it be used to visualize the motion dynamics of icebergs? Finally, is it
suited to visualize iceberg dynamics in relation to other natural phenomena?

On conversions between time formats

The compatibility of the ways in which time is stored in WMS and used in SVG
should not only be assessed in theory. Our prototype will serve as a practical
test-case for assessing the effective compatibility of the two time formats. What
are the steps needed to convert the time-stamps from real-world time to display
time attribute values?

On designing a visualization environment

Having increased our knowledge on animated mapping, moving objects visu-
alization theory and iceberg visualization tasks, we enter the phase of system
design. Based on a vision of the final system’s output and behavior, we will
try to determine the following: What should be the architecture of the system?
What should be its components and how should these components behave and
interact with each other?

6

Chapter 1. Introduction

We mentioned already three important features that advanced animated map-
ping applications should in our opinion include: spatio-temporal interpolated
animations, temporal legends and interactive control of the temporal dimen-
sion. Within the set of features that we consider developing, these three will be
given a special place and attention.

1.4 Methods

To answer the research questions posed above, a methodology was developed.
Figure 1.2 offers a schema of these methods. Our first task will be to review
literature on spatio-temporal phenomena visualization and animated mapping.
Next, we will study the candidate technologies that we intend to combine and

Literature reviews

ST database schema

System implementation

Specification study

System design

Animation behavior Visualization functions User interface

System testing + evaluation

Use-case analysis

ST data conversions

Figure 1.2: Methodology of the research

review the official documentation provided for them. Narrowing down on the
type of dynamic phenomena that we intend to visualize, we will review concepts
to understand and visualize moving object data. Our case-study or use-case on
iceberg movement visualization will then be studied and analyzed. Using the
result of this analysis, we will design an animated mapping prototype for ice-

7

1.5. Thesis structure

berg dynamics visualization. The design outline will inform the implementation
of the system which will be pursued using database technology and appropriate
programming and scripting languages.

The design of the system we intend to propose will be based on all that will have
been established in the first three chapters. For our system development, we
follow the steps described in the method called the Unified Process [8]. The five

Figure 1.3: Five core workflows of the Unified Process (from [8])

steps “requirements, analysis, design, implementation and testing” are shown
in figure 1.3. Our process will be initiated with the presentation of a use-case
involving different field specialists interested in iceberg visualization. The use-
case requirements will be analyzed to further instruct the design of the system.

1.5 Thesis structure

Including this introduction and our conclusions, this thesis is composed of eight
chapters.

In the next chapter, which ultimately aims at pointing out principles and recom-
mendations for temporal animated mapping, we start by introducing our topic
as part of the field of Geovisualization in general and of space-time phenomena
exploration and presentation in particular. In Chapter 3, we justify our choices
of WMS and SVG as technical solutions for our implementation, we determine
how well the two technologies can be combined together and finally choose an
existing WMS implementation generating SVG output that we will attempt to
extend.

A second phase of our research begins with Chapter 4, its study of a framework
for moving object visualization and the presentation and analysis we make of
our iceberg use-case. Chapter 5 outlines the architecture centric design that
we draw of our prototype and explains each component in detail. The following
chapter logically is the implementation, in which we report on the practical
work done. In Chapter 7, we start by presenting the visualization results we
got on our case-study and report on the testing of the prototype’s functioning.
Further on, we evaluate the system in terms of how well its components could
be used for a more generic animated mapping platform. Finally, we will give
recommendations for further developments and conclude on our work.

8

Chapter 2

Temporal animated maps:
principles and
recommendations

2.1 Introduction

The goal of this chapter is double: give a theoretical background and framework
to our study and point to a set of design recommendations for developing an
animated mapping environment. This study is limited to temporal animated
mapping and does not cover the use of animation for other purposes (e.g., fly-
bys, progressive building of the map layers, etc.).

The constitutive parts are the following: We start by setting a broad background
for animated mapping within the wide field of Geovisualization. Then, we adopt
theoretical frameworks for the study of spatio-temporal phenomena. These will
help us to better understand the temporal dimension of animated mapping and
to establish a relationship between real-world behaviors and the patterns we
can detect in them. We then genuinely enter the field of animated mapping
and present its principles, its advantages and its limitations. We end with a
comprehensive list of design rules and recommendations for temporal animated
mapping.

Since the environment we intend to develop is based on vector graphics and not
raster, our recommendations are slightly inflected towards vector animation.
However, most of the principles, advantages and limitations of raster and vector
animated maps are the same. What may differ slightly is the types of controls
that we provide the user with.

A fair part of the literature we will use here is written with a focus more on
knowledge sharing than on data exploration. Our interest regarding knowledge
sharing is to contribute to the development of an animated mapping platform
capable of generic output. Thus, we argue that its functionalities should be
basic. We will focus our approach slightly towards exploration because of the

9

2.2. Geovisualization and Exploratory Data Analysis as background

orientation of the prototype we intend to develop. However, a generic knowledge
sharing application and a generic exploratory environment should have similar
basic features.

2.2 Geovisualization and Exploratory Data Analysis
as background

As Harrower and Fabrikant [30] say, “many of today’s significant challenges,
such as resource management and environmental monitoring, depend upon
capturing, analyzing, and representing dynamic geographic processes.” Ani-
mated mapping is a technique which is increasingly often used by practitioners
of a variety of fields. We can consider that in the center of all these fields lies
Geographic Visualization, also termed Geovisualization.

Geographic Visualization is defined by MacEachren and others [44] as “a form
of information visualization in which principles from cartography, geographic
information systems, Exploratory Data Analysis, and information visualization
more generally are integrated in the development and assessment of visual
methods that facilitate the exploration, analysis, synthesis, and presentation of
georeferenced information.”

In their introductory chapter “The power of geographic visualization”, Dodge
and others [15] explain that this discipline “works by providing graphical ideation
to render a place, a phenomenon or a process visible, enabling the most powerful
human information-processing abilities – those of spatial cognition associated
with the eye-brain vision system – to be directly brought to bear.” Andrienko
and Andrienko [4] also insist on the predominant importance of visualization.
They assert that “in order to be able to think about data, the mind needs to
perceive the data.” In that sense, they consider that “one picture is worth much
more than a collection of numbers.” Dodge and others [15] further insist that
visualization is a “cognitive process of learning through the active engagement
with graphical signs.” The statements we chose underline the fact that a geo-
visualization researcher analyses a representation of reality instead of reality
itself.

MacEachren and others’ definition also shows that geovisualization is not only a
discipline involved with exploration and analysis of georeferenced information
but also with its “presentation”. However, it should be clear that geovisualiza-
tion techniques are applied to “reveal novel insights that are not apparent with
other methods of presentation [15]”.

While being connected to almost all the disciplines stated in the definition we
gave, our research is particularly connected to Exploratory Data Analysis. We
will see that the technique of temporal animated mapping is often used to ex-
plore large multidimensional datasets about which little is known. It is rec-
ommended [4] for revealing the structure and behavior patterns inherent to
spatio-temporal phenomena.

10

Chapter 2. Temporal animated maps: principles and recommendations

2.3 Conceptual framework for space-time phenom-
ena

More than a decade ago, Edsall and Peuquet [19] made the statement that “the
incorporation of time into GIS has introduced challenges in all realms of GIS re-
search.” Several of these challenges have been satisfactorily solved today, like,
for example, the storage of spatio-temporal data within databases. Others, like
the visualization of such data, are presently the object of intense research in
geoinformatics and this present work aims at being a part of this. To represent
time and phenomena unrolling in time coherently, it is necessary to refer to a
well defined conceptual model of time.

2.3.1 Time as a dimension: the Where – What – When triad

Peuquet’s [67] developed a “conceptual framework for the representation of tem-
poral dynamics in geographic information systems” that can be considered an
important building block of today’s research for the integration of time into geo-
visualization. The key element of the framework is the where – when – what
triad (as shown in figure 2.1).

Figure 2.1: Where – When – What triad (reproduced from: [67])

The where – when – what triad contributed to the development of a conceptual
schema considering time not merely as a data attribute but as a dimension
in itself. Geographic phenomena can now be approached from three different
angles enabling three “basic kinds of questions” [67]:

1. when + where → what: Describe the object or set of objects (what) that
are present at a given location or set of locations (where) at a given time
or set of times (when).

2. when + what → where: Describe the location or set of locations (where)
occupied by a given object or set of objects (what) at a given time or set of
times (when).

11

2.3. Conceptual framework for space-time phenomena

3. where + what → when: Describe the times or set of times (when) that
a given object or set of objects (what) occupied a given location or set of
locations (where). [67]

2.3.2 Exploratory task-levels focusing on time

In their systematic approach in “exploratory analysis of spatial and temporal
data,” Andrienko and Andrienko [4] are inspired by Koussoulakou and Kraak [37]
to adopt a framework similar to the one Bertin developed on exploratory tasks.
In the same way Bertin distinguishes between different spatial “reading lev-
els” [11], other authors [37, 7] distinguish between such reading levels for the
other data dimensions. Andrienko and Andrienko [4], for example, distinguish
between elementary tasks and synoptic tasks (earlier termed general tasks by
Andrienko and others [7]. Elementary tasks “refer to individual elements.”
Synoptic tasks “involve the whole reference set or its subsets.” For the latter
type of tasks, they give the following example: “describe the variation of the
proportions of children over the whole country.”

Andrienko and others [7] adopt Peuquet’s basic kinds of questions and apply
to them the distinction of reading levels. The number of combinations becomes
large as for each of Peuquet’s basic kind of question, the elements present on
both sides of the “→” are divided into elementary and synoptic (or general).
Thus, all together, twelve different combined approaches exist which shows well
how complicated things can get when the temporal dimension is introduced
to geographical analysis. With the objective of simplifying this approach and
because they are interested primarily in the temporal aspect of the phenomena,
Andrienko and others decide to focus on the basic kind of question which are
centered on time. They come up with four exploratory scenarios and definitions
that we have entered into table 2.1.

elementary what + where general what + where

elementary when Describe characteristics
of this object (location) at
the given time moment.

Describe the situation at
the given time moment.

general when Describe the dynamics of
characteristics of this ob-
ject (at this location) over
time.

Describe the evolution of
the overall situation over
time.

Table 2.1: Elementary and general levels of exploration
for tasks focusing on when (adapted from: [7])

12

Chapter 2. Temporal animated maps: principles and recommendations

2.3.3 Two types of time: linear and cyclic

Geographers who discussed the notions of time generally agree that time can be
considered in two different ways: as a linear continuum or as repetitive cycles.
In linear time, the time reference is absolute and measurable by clocks. In cyclic
time, absolute time remains present in the way time is measured but the main
temporal reference is one cycle. This way of thinking about time is fruitful to
study repetitive patterns inborn in natural and human processes. Nature bears
cycles such as days, years and moon cycles. Societies further built other cyclic
temporal structures for organizing their activities (e.g., weeks, months, hours,
minutes, etc). Let’s look at transport as an example of human activity to show
the advantage of the cyclic time perspective. While studying transport patterns,
a researcher will get more insight about spatial behaviors if he thinks of them
as projected onto a daily temporal reference (one day = one cycle) than if he
thinks about them as simply projected on a uniform and unstructured time-
line. For transport, weekly, monthly and yearly cycles could be equally relevant
depending on the specific behavior that one tries to analyze.

2.4 Describing dynamics : types of change, behav-
iors and patterns

In the present section, we will present two ways of considering dynamic phe-
nomena. The first way originates from the idea that any phenomena happening
in time can be viewed as one of three types of change. The second way, centered
on Andrienko and Andrienko’s [4] notions of behavior and patterns, attempts to
describe the tendencies present in the dynamics of real-world phenomena.

2.4.1 Types of change

Real-world processes can all be viewed as the product of some form of change.
Andrienko and others [7] made use of Blok’s [12] work on change and propose
three categories of changes:

1. Existential changes, i.e. appearances and disappearances

2. Changes of spatial properties: location, shape or/and size, orientation, al-
titude, height, gradient and volume.

3. Changes of thematic properties expressed through values of attributes

2.4.2 Spatio-temporal behaviors and patterns

Andrienko and Andrienko [4] introduce the conceptual notion of behavior to
observe the characteristics of spatio-temporal datasets. They define behavior
as “the set of all characteristics corresponding to a given reference (sub)set,

13

2.4. Describing dynamics : types of change, behaviors and patterns

considered in its entirety and its particular organization with respect to the
reference (sub)set.” Since behavior is related to “all characteristics”, this notion
only applies to the synoptic or general level and not to the elementary one. The
authors further clarify that “behavior” is “a generalization of such notions as
distributions, variations, and trends.”

We find slightly misleading that Andrienko and Andrienko include distribu-
tions in their behavior category. The common use of the word behavior is re-
lated to action or at least to something happening in time. To the contrary a
distribution , to something describing a single state in time. We see further on
that this inclusion of static states in their definition is intentional as they pro-
vide us with the following example: “find spatial clusters of districts with a high
proportion of children.” They further specify that the behavior under study is
“spatial cluster of high values.”

While we consider the notion of behavior to be useful, we want to reject the
part of this concept that is not related to time. We understand Andrienko and
Andrienko’s idea of having a general term both for static and dynamic phenom-
ena. We also understand that many static states, such as distributions, are the
result of a process and actually of a behavior or a set of behaviors. However,
our intuitive understanding of the term behavior, which is in harmony with
the definitions provided by the Oxford English Dictionary [1]1, motivates us to
examine the value of the generalization made by Andrienko and Andrienko.
Because in visualization and in particular in animated mapping, dynamism is
the result of many static states observed in a sequence, we consider it is useful
to keep dynamic descriptive terms such as “trends and variations” from static
descriptive terms such as distributions. For these reasons, we decide, in our
framework, to restrict the use of ‘behavior’ to describe dynamic processes.

Detecting spatio-temporal patterns is the most widely stated advantage of an-
imated mapping. Andrienko and Andrienko [4] define pattern in general as “a
construct that reflects essential features of a behavior in a parsimonious man-
ner.” The relation posed by the authors between behavior and pattern is a very
useful one. While a behavior relates to the “set of all characteristics” (centered
on the phenomenon), a pattern is a summary mental construct (centered on
the understanding of the observer) that can be expressed in language. In this
study, we are primarily interested in spatio-temporal patterns. As an example
of such a pattern, we could present a case of household income. An analyst
might observe that the centralized distribution of high incomes evolves into a
pattern with many smaller isolated areas of high income. We can see here that
spatio-temporal patterns can often be described as the evolution of two or more
spatial patterns through time.

In many cases, the goal of exploratory data analysis is to find a set of patterns
that represents, or approximates, the behavior [4] under study. Patterns can
be explicitly described by a researcher or can be present as a mental schema

1None of the six main definitions given describes a static phenomenon. The fifth definition de-
fines behavior as “the manner in which a thing acts under specified conditions or circumstances,
or in relation to other things.” The term “act” shows that behavior happens through time.

14

Chapter 2. Temporal animated maps: principles and recommendations

in his mind. While observing a temporal animation, a researcher has a set of
patterns in his mind. A particular pattern can be triggered by the behavior of
the phenomenon he is observing. For instance, in wild animal data exploration,
a researcher might notice that many individual animals that are first dispersed
in space converge to a region of shade or water at the same time. Convergence
is the pattern in the research which is triggered. After getting acquainted with
all the behavioral aspects of the phenomenon, the researcher can attempt to
summarize the behavior with a set of patterns.

2.5 Principle of temporal animated mapping

In the previous sections, we have set up a conceptual background for the visu-
alization of spatio-temporal phenomena without looking into any specific tech-
nique for the actual visualization. In the present section, we start by review-
ing the basic principle of animation and the basic characteristics of animated
maps (temporal scale and temporal resolution) and continue with three basic
requirements for animated mapping (time to get acquainted, temporal legends
and interactivity).

2.5.1 Basic principle of animations

The basic principle of temporal animated maps is simple. Harrower and Fab-
rikant [30] define animations as “sequences of static graphic depictions (frames),
the graphic content of which, when shown in rapid succession (...), begins mov-
ing in a fluid motion.” One single frame, that we might think of as a paused
animation shows a graphical representation of the real-world much like any
static map. To represent change, the technique makes use of display time to
represent the passage of real-world time. Real-world events present in the data
are displayed in the same sequence as they happened and real-world dynamics
are observable in the map-display. Temporal animated maps therefore show
the unfold of real-world processes in a very intuitive way, which inspires Blok
to say that they “mimic real-world dynamics” [13].

This definition is valid both to raster and vector animations. However, while
raster animations are simple to achieve (show a series of raster images of the
same area at a rapid pace), vector graphics animations needs programming.
Harrower [28] claims the technique consists to “numerically define the appear-
ance of animated objects (e.g., size, direction, and velocity) so that they can be
rendered “on the fly” by the computer, which decodes and visually renders these
vector-based animations in real time.”

2.5.2 Basic characteristics: temporal scale and resolution

Just as the spatial scale of a map is the ratio between map distances and real-
world distances, the temporal scale of an animation depicting a real-world phe-

15

2.5. Principle of temporal animated mapping

nomenon is the ratio between display-time and real-world time [30]. Harrower
and Fabrikant [30] give the following example: “five years of data shown in a
ten second animation would have a temporal scale of 1:157 million.” We want
to make it clear to the reader that we are not talking here about the rate at
which frames are played. An animation can have a very high frame-rate speed
at the same time as a high temporal scale (high temporal scale means slow rate
of change in the animation).

Some authors refer to the speed of an animation instead of its temporal scale.
The notion of speed is more obvious than that of temporal scale. However,
the speed of an animation cannot be objectively defined and a user is bound to
describe his actions with words like faster or slower. Because temporal scale
is more objective than speed and because faster/slower are more intuitive, we
suggest that the notions of temporal scale and that of speed (and its related
terms: faster/slower) should remain in use.

Most animated maps keep a constant temporal scale throughout the animation
although, as we will see when we talk about event-based animated maps, the
interactivity provided to the user enables him to view different parts of the
animation at a slower or a faster pace, thus making the temporal scale vary.

The temporal resolution of an animated map, also called temporal granularity
can be defined as “the finest temporal unit resolvable. [30]” For animations in-
cluding an interpolation mechanism, we need to make a distinction between the
temporal resolution present in the dataset and the temporal resolution of the
actual animations. The temporal resolution of vector objects in a database may
or may not be regular. Concerning vector graphics animations, if there is no in-
terpolation, the temporal resolution will correspond to the temporal resolution
present in the data. Alternatively, if there is an interpolation mechanism, the
temporal resolution may then be thought of as infinitely small.

2.5.3 Basic needs for animated mapping

To introduce what we consider to be the three basic needs in the design of ani-
mated maps and animated mapping tasks, we developed a scenario showing the
cognitive process triggered by a simple example of a static map reading task.
This scenario can be found in appendix A. Here we will only present its main
conclusions.

An analyst has a set of basic needs in the first phases of exploring a spatio-
temporal dataset using the technique of map animation. Basically, to make
sense of what he is seeing, he needs time and ways to get familiar with all three
dimensions of the map (where, what, when). To satisfy these needs, three basic
requirements for the design of animated maps and animated mapping tasks
have been pointed out in literature:

16

Chapter 2. Temporal animated maps: principles and recommendations

1. The need for time to get acquainted with all three dimensions. Because
of continuous change, the amount of information to get hold of is much
greater than in static maps.

2. The need for temporal legends to build an appropriate temporal schema.
Kraak and others [39] state that “for users to understand a temporal an-
imation, (. . . they must . . .) apply an appropriate temporal schema that
allows them to interpret meaning inherent in the sequence and pacing
of the animation. They conclude that the “animated maps should be ac-
companied by a legend that prompts an appropriate schema,” i.e., one or
several temporal legends.

3. The need for interactivity to give himself time to freely explore the at-
tribute and temporal dimensions of the data without overloading his cog-
nition. Specifically for exploratory purposes, Andrienko and others [6]
advance that ““pure” animation is insufficient for supporting exploratory
analysis of time-referred data. An analyst should have at her/his disposal
powerful and convenient facilities to control display time within the pre-
sentation.”

We will study these features more in detail, along with other requirements
or recommendations, in section 2.8. Harrower and Fabrikant [30], as well as
Slocum and others [72], report that authors agree on the needs for interactivity
and for temporal legends. Therefore, in the forthcoming sections, we will never
make distinctions between animated maps with or without interactive controls
and with or without temporal legends. We assume that in all cases where they
are helpful, they are provided.

2.6 Suitability and advantages of animated maps

2.6.1 Suitability of animated maps for spatial dynamics

Review papers as well as specialized papers [66, 13, 30, 72] affirm that ani-
mated mapping is a useful technique for knowledge sharing despite the skep-
ticism and critics of certain authors. Furthermore, their use for exploratory
purposes is undisputed. Andrienko and Andrienko [4] assert that to fully and
visually explore a massive spatio-temporal dataset whose temporal dimension
contains a wide range and large number of values, “animation may be the only
reasonable choice.” Except for representing the trajectories of moving objects,
where the space-time-cube can be an effective technique, the main technique
to which animated mapping is compared to is that of small-multiples. Special-
ized authors generally agree that “map animations and small-multiples are best
used for different tasks. The former being more useful for inspecting the overall
trend in a time series dataset, the latter for comparisons of various stages at
different time steps” [30]. In the following sections, we show what advantages

17

2.6. Suitability and advantages of animated maps

animated maps possess and eventually show how the approach compares with
small-multiples in specific.2

2.6.2 Advantages of animated maps for spatial dynamics

The principle of animated mapping, which we saw earlier, enables viewers,
to visualize representations of real-world dynamics in an intuitive way. In
this section, to introduce a more complete set of the advantages of animated
maps, we will base our approach on Shneiderman’s [70] well known Visual
Information-Seeking Mantra whose punch-line is: “Overview first, zoom and
filter, then details-on-demand.”

Shneiderman’s principles suggest that any visual exploration task should begin
with an overview, or overall representation of the data. Ogao and Kraak [58]
advance that temporal animated maps offer “scientists the opportunity to deal
with real world processes as a whole rather than as instances of time.” Although
Andrienko and Andrienko [4] consider that animated maps do not fully meet the
requirement of overview tasks (because all the referrers cannot be seen in one
glance), they conclude that animations remain indispensable tools because no
other generically applicable3 technique can provide a better or even equivalent
overview of large spatio-temporal datasets and of the behaviors they record.

The next stage of the Visual Information-Seeking Mantra is “zoom and filter.”
Zooming in the spatial dimension is analogous to focusing on specific extents of
the time-line. One might want to explore what is the behavior of a phenomenon
in a particular area during a particular time-extent. The fact that any stage of
the depiction is immediately preceded by a stage representing a real-world mo-
ment that existed immediately before and symmetrically succeeded by a stage
that existed immediately after it makes Blok [13] say that the viewer can see
information in its “temporal context.” One of the functions of temporal legends
is to assist the map reader in this task.

Spatio-temporal behavior observation and related pattern detection are among
the most important tasks made possible by map animations. This task can be
considered to cover the whole spectrum of visual exploration. Such behaviors
and patterns can appear to be fairly complex. They are related to at least two
dimensions of space as well as to the temporal dimension. They might even in-
clude an attribute dimension which can itself change with time. Many authors
defend the capacity of temporal animations to reveal subtle spatio-temporal
patterns that are “not evident in static representations,” sometimes “even to
expert users who are highly familiar with the data” [30]. Several experiments,
such as those done by Dorling and Openshaw [17], MacEachren and others [44]
Andrienko and others [6] or Blok [13], to name but a few, give evidence of this.

2For reviews and practical experiments on comparing small-multiples with animated maps,
the reader might refer to [26, 30, 72].

3For some types of objects, i.e. moving objects, the space-time-cube technique can be applied
efficiently but with some limitations

18

Chapter 2. Temporal animated maps: principles and recommendations

The last stage of Shneiderman’s mantra is “details on-demand.” One of the
great advantages of animations over series of small-multiple maps is “their
ability to display micro steps in complex systems” [30]. Such a possibility might
enable to detect small changes that would otherwise have been missed but in
general, it is precisely these micro-steps which make animations represent pro-
cesses in an appealing and often intuitive manner. In addition, for animations
aided by an interpolation mechanism, it is possible to focus into the temporal
dimension further than a true reflection of the data. For cases where spatial
and temporal interpolation can be assumed to come close enough to the behav-
ior of the real phenomenon, such a mechanism can be useful for a scientist to
view micro-steps mostly to relate the state (attribute, position or shape) of an
object with its environment or other objects.

Although in early stages of exploration, information seeking tasks might re-
semble passive or perhaps curious observation of the information displayed, in
more advanced stages, it often involves a more inference-based approach. At
these stages, the expert might formulate – in writing or mentally – fairly pre-
cise hypotheses. Interactive controls of animation enable him to test a large
number of such hypotheses in a short time, further enabling him to formulate
new ones . . .

Often, animated mapping will be only one of the techniques used by a re-
searcher. The knowledge gained, the patterns detected and the hypotheses for-
mulated with the help of the animated display, can lead the expert to identify
another technique as a potentially effective means for acquiring new knowl-
edge. For this reason, environments interactively connecting an animated map
display with multiple alternative representations are often used.

In the end, we saw that animated mapping had advantages to offer at all stages
of “visual information seeking” as enumerated by Shneiderman’s mantra. We
will now conclude this section with a remark on interactivity and temporal leg-
ends. We have already said that we consider both to be inherent to sound ani-
mated map design. Both are intimately related to most – if not all – advantages
stated here.

2.7 Perceptive and cognitive limitations of animated
maps

Several authors have mentioned the perceptive and cognitive limitations of an-
imated maps. Among them, Sara Fabrikant and Mark Harrower have studied
the question in depth [20, 21, 29, 30]. In his article “The cognitive limits of ani-
mated maps”, the latter integrates concepts from psychology studies on the cog-
nitive aspects of the use of animated graphics. The framework he adopts is that
of the Cognitive Load Theory (CLT). The basic principles introduced from CLT
are those of long-term memory (LTM) and working memory (WM). While LTM
“stores knowledge and skills on a permanent basis“, WM “performs tasks asso-
ciated with consciousness and actively processing incoming stimuli” [29]. We

19

2.7. Perceptive and cognitive limitations of animated maps

will present hereafter the four most important cognitive and perceptive lim-
itations related to animated map reading tasks: change-blindness, cognitive
overload, retroactive inhibition and split-attention.

Change-blindness

Experiments with animation showed that observers sometimes fail to notice
large changes in the graphics. Harrower and Fabrikant [30] advance that
this “change-blindness effect operates even when viewers know that (changes)
will occur.” This points out that solutions should be found to tackle change-
blindness.

Cognitive overload

The biggest and most generic problem posed by animated maps is “cognitive
overload.” Harrower and Fabrikant [30] say “Regardless of the map-use goal,
unlike static maps that do not change, the individual frames of an animated
map are on-screen briefly and there is little time to examine fine details. In
other words, there are obvious cognitive and perceptual limits that must be un-
derstood and used to inform map design. We believe exceeding these limits –
which is easy to do with today’s massive and complex datasets coupled with
powerful computer graphic cards – is likely to leave the user frustrated or un-
sure of what they have seen” [30]. Studying this same problem, Harrower [29]
concludes that “the problem is not that map viewers are incapable of seeing the
changes occurring on the animated map, it is that they have well-documented
trouble remembering what they saw and integrating it into their knowledge
schemata.”

Retroactive inhibition

Another limitation treated by Harrower which is closely related to that of cog-
nitive overload, is termed “retroactive inhibition”. It relates to the fact that
“what comes first in the animation often has to be remembered and understood
in order for what comes next to make sense.” The act of remembering, in CLT
terms can be expressed as the passage of information from working memory to
long-term memory. ““Retroactive inhibition” occurs when there is insufficient
time for this to happen, resulting in a kind of cognitive jam.”

Split-attention effect

The fourth limitation that we will cover here is “split-attention”. Split-attention
is what occurs when a user needs to simultaneously attend two different cogni-
tive objects that are separated in space or in time [29]. It is an effect well known
by cartographers because of the frequent use of legends: the information in map

20

Chapter 2. Temporal animated maps: principles and recommendations

legends often needs to be frequently referred to for the information mapped to
be understood. For temporal animated maps, the problem is amplified because
of dynamism. If the map viewer needs to look at the temporal legend during an
animation, he will not see part of the animation and possibly even lose track of
the dynamic elements that he was attending to. We will discuss this more in
upcoming sections.

2.7.1 Cognitive Load Theory for exploratory mapping

Harrower derives guidelines for the design of animated maps from the prin-
ciples of CLT as well as from related knowledge within the cartographic field.
However, the author cautions us that the work he reviewed on animation “is
clearly aimed at students in a classroom.” It might therefore not be directly
applicable for “highly experienced and motivated map readers.” To characterize
students, we could say that they might not have the possibility or be willing to
spend much time on an animated visualization. The animated maps are there-
fore expected to be understandable with a rather small investment of time and,
hence, with little interactive exploration. Because of the characteristics of this
public, to augment the effectiveness of the animated maps, Harrower suggests
techniques like “looping”, “slowing the rate of playback or providing built-in
pauses” and, in general, techniques characterized by a lesser level of interac-
tivity than those traditionally destined to the more specialized groups of users.
Field experts and specialists in Geovisualization, on the other hand, are usually
provided with tools with a higher level of interactivity and are characterized by
a willingness to spend more time exploring the dynamics present in spatio-
temporal datasets.

Our focus here is on the use of animated maps for exploratory purposes. Never-
theless, we will see in the next section that the concepts of the Cognitive Load
Theory and the ideas put forward by Harrower, Fabrikant and other authors
can be used to inform the design of an animated mapping platform. In particu-
lar, we will show how change-blindness, cognitive overload, retroactive inhibi-
tion and split-attention can be reduced by various features of a well designed
interactive mapping interface.

2.8 Design requirements and recommendations for
animated maps

The purpose of this section is to offer a set of design recommendations for an an-
imated mapping platform. It contains what we consider to be the most useful
generic functionalities for animated mapping proposed in literature. As an-
nounced, this section is a in depth continuation of the three basic needs that we
treated in subsection 2.5.3. Here, we have regrouped the functionalities pro-
posed into eight categories. The first contains rules that transfer directly from
static on-screen mapping. The second treats of temporal legends, the third of

21

2.8. Design requirements and recommendations for animated maps

controls provided to the user for controlling display time. The fourth offers
solutions to the split-attention effects. The fifth presents recommendations
for zooming into the spatial dimension and for focusing into the temporal di-
mension. The sixth presents the usefulness of a temporal scale/speed control
functionality. The seventh exposes useful techniques to emphasize change in
animations and finally, the eighth shows the complementarity of animated dis-
plays and small-multiples as well as alternative representations of the data.
For some of these categories, we will show how the particular design element
helps to solve problems mentioned by Harrower and explain the benefit brought
by the element from the perspective of the Cognitive Load Theory.

2.8.1 Rules transferred from static on-screen mapping

The graphical elements of animated temporal maps often don’t differ greatly
from those present in static maps. In effect, many animated maps’ graphics look
just like static maps, whether they make use of special symbols to represent
dynamism or not.

Although the symbols used to represent real-world items are similar, the graph-
ics of animated maps should be less complex than those of static maps in order
to compensate the augmented cognitive load brought by dynamism. The most
obvious change between static and animated mapping might thus be to adapt
the symbology used. Rensink [68] identifies four as the number of “novel items
that can be held in WM” at once. Classes for choropleth animated maps, for
instance, should probably not exceed a number close to four or five and it might
be advantageous to use even less when possible as Acevedo and Masuoka [2]
showed in their experiment on urban growth animated mapping.

In static temporal mapping, the visual variable shape is commonly used to rep-
resent movement or change. Graphical symbols such as arrows or lines are
used to represent a moving tendency or successive fronts of a phenomenon. For
animated mapping, although the temporal and thus dynamic characteristic of
the data is already explicit in the animation, similar use of graphical symbols
is often made and considered useful to help the viewer understand the change
he is seeing.

Along with using a simplified symbology, other ways to clear the display from
unnecessary clutter are switchable data layers and filtering. In on-screen map-
ping, whether it is static or animated, the possibility of switching on or switch-
ing off data layers is a recommended feature. Data filtering, in a similar way,
enables the animated map designer to remove noise and items that the map
reader doesn’t want to observe.

Hence, a complete animated mapping environment should offer the user the
ways to quickly: aggregate data (to represent less data classes), use static sym-
bols representing dynamism (such as arrows, e.g., for wind or ocean currents)
and to switch data layers on and off.

22

Chapter 2. Temporal animated maps: principles and recommendations

2.8.2 Temporal legends

Temporal legends for orientation in time

Adding temporal legends (TL) to animated maps and animated mapping envi-
ronments is recommended. Kraak and others [39] explain that legends help
the viewers to locate the information displayed in the temporal dimension and
“apply an appropriate temporal schema that allows them to interpret meaning
inherent in the sequence and pacing of the animation.”

a)

c)

June 1 June 22June 10

b3)

b2)

b1)

Figure 2.2: Three main types of temporal legends: a) Digital clock (from [30]), b) Time-bar
(b1 from Google Earth [25], b2 from [19] and b3 adapted from [30]) and c) Cyclic temporal
legend (from [46])

The three most frequently used types of temporal legends are: digital clocks
(or “text” TL), time-bars and time-wheels (also termed cyclic TL). These are
exemplified in figure 2.2. Besides research on graphical temporal legends, sonic
temporal legends have also been suggested and developed. Research is still in
its infancy and we will not discuss it further.4 We will now review the main
principles and advantages of these different legends, starting with the digital
clock.

Digital clock

The digital clock is a dynamic text item that precisely tells the map viewer what
real-world time the presently viewed graphic state corresponds to. The text
actually constituting this information can be made of any combination of string

4The reader may refer to Kraak and other [39], [30] and Slocum and others [72] for reviews
and further references on sonic temporal legends.

23

2.8. Design requirements and recommendations for animated maps

characters commonly used and understood by the user population to write out
time (e.g., 13:56:08 for a clock time, 2008-12-25 13:56:08.136 for date and time
precise to the 1/100 of a second).

Time-bar (Linear time legend)

The time-bar (Fig. 2.2-b) is a graphic temporal legend whose generic character-
istics are a timeline with a moving symbol representing the real-world moment
corresponding to the frame displayed on screen. The symbol representing the
present is sometimes called the present vehicle-sign [39]. Time-bar legends can
be designed in various manners. One solution, such as shown in example b3 of
figure 2.2, the legend is made of three components. On the left hand side is an
area representing the time that has already elapsed in the animation, in other
terms, the real-world past. On the right hand side appears an area represent-
ing the real-world future. The third element is the line or symbol separating
past and future, i.e., the present.

Cyclic temporal legends

An example of a cyclic legend is given in figure 2.2. Its principle is very similar
to that of an analog clock. Much like the hand of a clock, the present symbol
advances to demonstrate the passage of time. The advantage of cyclic tempo-
ral legends is to visualize behaviors that are related to temporal cycles among
which the most common in practice are years, weeks and days.

Taking up the example on transport that we saw earlier, the analyst wants to
get insight on how transport intensities vary with daily hours. He will benefit
from visualizing the time span as a cycle as it will help him notice the relation
existing between the intensities and the time of day – represented by the posi-
tion of the present symbol in the cyclic legend. Exploratory visualizations using
cyclic legends would most often benefit from combining it with one or both of
the other legend types.

Combining different types of temporal legends

The choice of legend type depends, according to Kraak and others [39], on “the
nature of the spatio-temporal phenomena displayed (. . .), the nature of the tem-
poral queries that users are expected to make, and the knowledge schema con-
cerning spatio-temporal entities” that the designer wants to prompt.

As we foresaw, it appears often to be beneficial to combine two or even three
types of temporal legends. In effect, while the time-bar is very helpful to tell the
viewer how far from the beginning and the end of the temporal extent loaded is
the presently displayed state, a digital clock, possibly very close to the time-bar
is useful to tell him exactly what that time is. In fact, such an association is
very common. For time-wheels, it would often be needed for the user to locate

24

Chapter 2. Temporal animated maps: principles and recommendations

the time cycle he is presently visualizing in a broader time-span. The time-bar
is ideal for that.

To conclude on this first of the sections related to temporal legends, we want
to mention that they often serve a double purpose: not only to they help the
user orient himself in time but, through interactivity, they are made into a time
navigation tool [39].

2.8.3 Interactive control of display time

To introduce the need for powerful interactive control over the temporal dimen-
sion of a dynamic data depiction, we will draw a scenario of an exploratory
process from the cognitive point of view. In his exploratory task, the user pro-
gressively makes sense of more and more information. To constructs an un-
derstanding of the dynamic phenomenon under study, he needs to regularly
“shuttle” information from working memory to long-term memory [29].

The newly acquired knowledge improves the user’s understanding which in
turn enables him to improve the knowledge schema that he applies to the vi-
sualization task. He for example expects to find particular behaviors and has
newly formed, more precise, hypotheses that he needs to test. In a cyclic man-
ner, an understanding of the phenomenon is built for general trends as well as
for detailed ones.

To allow shuttling of information from WM to LTM and solve the problems of
cognitive overload and retroactive inhibition, authors unanimously recommend
the provision of interactive control for animated maps. Such controls can help
the user to reduce the cognitive strain provoked by the dynamic graphics. The
question thus arises of the type of interactive controls to provide for animated
mapping and in particular for exploratory purposes.

With the development of animated mapping techniques and of supporting tech-
nologies, different types of interactive controls have been provided to users.
After the age of VCR-type controls and forward-stepping, the present stage of
computers seems to allow more powerful tools. The interactive time-slider of
common software like Windows Media Player as well as similar items provided
in Google Earth or specialized software like Tempest [19] show a powerful and
promising way of interacting with the temporal dimension of data.5 NNN An
important difference needs to be made between the usefulness of a slider for
raster animations and for vector. To our knowledge, no existing software for
raster animations allows the user to play the images in a smooth sequence by
moving the slider backward and forward. The big emphasis that we put on
the time slider might therefore apply only to vector animations (for a few more
years).

5Similar interactivity was added on cyclic temporal legends. We will however not discuss such
features for reasons that we will expose in the next section.

25

2.8. Design requirements and recommendations for animated maps

The principle behind the time-slider in animated mapping is to add interactiv-
ity to the time-bar temporal legend. The present vehicle sign is made inter-
active and can be clicked and dragged. For vector graphics, which are lighter
than raster, dragging the time-slider enables the user to browse through the
animation with a lot of flexibility. With the single and simple action of moving
the mouse from left to right and right to left, the user can:

1. Jump to a chosen time,

2. Instantly choose a temporal subset or temporal region he wants to explore,

3. Loop over this chosen temporal subset,

4. Quickly pass from viewing short temporal extents to broad ones,

5. View the animation in forward and backward mode,

6. Tailor the speed at which he views particular depicted events,

7. Pause and start playing the animation again to allow information shut-
tling from WM to LTM when necessary.

The list of actions enabled by the temporal slider is thus large. Most of these
actions cannot be achieved as quickly, simply and with as much flexibility with
other types of temporal controls. However, some of these might be imperfectly
practiced with a time-slider and even for vector data, the realization of such
powerful interactivity might not always be possible because of computer mem-
ory limitations.6 Nevertheless, it appears to be the single most useful control
for an exploratory animated mapping environment. -NNN

2.8.4 Solutions to the split-attention effect

The split-attention problem was explained earlier (section 2.7). The type of
split-attention we will try and offer solutions for is solely related to the user’s
attention being split between elements in the dynamic display and the – dy-
namic – temporal legends. Some authors studied the use of sonic temporal
legends along with graphical ones to solve this problem but, despite the po-
tential effectiveness of such solutions, we will not treat them here. Regarding
graphical solutions, the position and integration of temporal legends in the map
display will be reviewed. Then, we will present a hypothesis about why inter-
active time-sliders might be particularly useful for solving the problem of split
attention.

Temporal legends placed in a separate display area reserved for graphical user
interface items is problematic because it is more likely to be distant from the dy-
namic elements the user is attending to (see Fig. 2.2 b2)), thus increasing split
attention effect. Embedding or superimposing temporal legends over the map

6In cases where this would not be possible because of too massive datasets, solutions like data
aggregation, spatial and temporal focusing or falling back on plain animation would be possible.

26

Chapter 2. Temporal animated maps: principles and recommendations

itself were proposed as solutions (see the famous Google Earth GUI in Fig. 2.2-
b1) by Kraak and others [39]. Very large temporal legends were designed, for
example by Mitbo and others [46] (see fig. 2.2-c) probably with the objective of
making the user subconsciously aware of the position of the present sign.

We now want to present a hypothesis on the usability of time-sliders to decrease
split-attention for vector animations. Our hypothesis is that a time-slider is not
only graphical user interface feature but that it also links to a tactile interface
via mouse gestures. We argue that it is a powerful interface to a tactile-related
mental image of the temporal dimension. In a preliminary phase, the user can
get familiar with the relation between the mouse movements on the one hand
and the motion provoked in the time-slider on the other hand. Such a relation
can be memorized and the user can approximate the movement in time that
he is triggering, solely by knowing how much he moves the mouse. Approxi-
mately knowing where the presently viewed state stands within the temporal
extent has two and perhaps three cognitive advantages. First of all, we may
argue that the problem of split-attention is partly solved because the main re-
ferrence becomes tactile and not visual anymore. The user needs to look at the
temporal legend less often. Secondly, when he needs to look at it, the diversion
of attention lasts less long because he approximately knows where to find the
present vehicle-sign. Finally, an additional advantage might result from the
use of a second sensory channel. The effective working memory capacity of the
user might be increased.7

In conclusion, various solutions were reviewed from literature as well as pro-
posed by us to help solving the problem of split-attention. However, it must
be stated that experimental testing has not yet been reported on to assess the
effectiveness of any of these solutions.

2.8.5 Zooming and temporal focusing

In animated maps, the changes occurring can be complex and numerous for
the users’ cognitive abilities. Another problem with animation and especially
with interactive control of the temporal dimension is that computers might not
be powerful enough to neatly mimic the dynamism of the data. To solve these
problems, focusing on subsets of both the spatial and the temporal extents often
reveals to be useful. We needn’t present spatial zooming here and will treat only
temporal focusing.

Temporal focusing is less common than spatial zooming just as animated maps
are less common than static ones. It is analogous to spatial zooming in the sense

7In his review of CLT literature and in particular of how effective adding sound to animations
is, Harrower [29] reports: “The amount of information that can be processed using both auditory
and visual channels exceeds the processing capacity of a single channel; thus, limited WM may
be effectively expanded by using more than one sensory modality.” We can argue that this also
applies to the sensory channel of touch. CLT authors Kalyuga and others [33] point out, in
Harrower’s words, that “dual-mode presentations do not reduce extraneous cognitive load or
make the presentation inherently less complex; rather, they increase effective working memory
capacity.”

27

2.8. Design requirements and recommendations for animated maps

that it helps the user to focus on a subset of the data, not spatially but tempo-
rally. A temporal subset of the data is chosen to be visualized in a dynamic
way.

Except for reducing computer and human memory strains, temporal focusing
has the potential advantage of facilitating a proper temporal schema in the
reader’s mind. In effect, choosing moments for the beginning and end of the
visualization enables the user to more quickly understand and remember what
moments of the real world phenomenon the different moments of the animation
correspond to.

2.8.6 Controlling the temporal scale/speed

We already introduced the notion of temporal scale and explained its relation
to the speed of an animation. As Harrower and Fabrikant say, the scale of
most temporal animated maps does not vary through the animation. Anima-
tions in which the temporal scale changes to match increases and decreases in
the intensity, complexity or interest of the real-world change viewed are called
event-based animations [72]. For an exploratory environment, we argue that
complicated design involving temporal scale change would not be part of the
set of basic components but of a more advanced set. Similar speed-variation
effects can be achieved via a time-slider.

2.8.7 Emphasizing change: smoothness, saccades and dynamic
variables

In the present section, solutions to change-blindness and to difficulties to re-
member and thus make sense of what one has seen will be treated. Various
techniques have been proposed in literature and used in practice with the goal
of having one of three following effects: make the change easier to see, make
the change easier to understand or make the change easier to remember.

Smooth change versus saccaded change

Smooth change of dynamic graphics can have both positive and negative effects
on the ability of a user to interpret and to make sense of an animation. Change
can be difficult to interpret because of characteristics in the data. For exam-
ple, too few states of a continuously changing phenomenon might have been
recorded by instruments inducing a low temporal resolution. Taking the ex-
ample of moving objects, it might not appear obvious to the viewer which object
moves where from one moment to the next. Applying spatio-temporal interpola-
tion to such moving objects can be an effective way to help the viewer interpret
what he is seeing. Therefore, in this case, smoothness, via the application of
interpolation, improves the visualization of a phenomenon.

28

Chapter 2. Temporal animated maps: principles and recommendations

In other cases, smoothness of change makes it difficult to make sense of the
change and to memorize it. Famous experiments [71] showed that animation
viewers can be blind to very important changes in a display, even if they are
aware that some change will occur. Making animations less smooth or in other
terms, voluntarily reducing the temporal resolution and making the changes
happen in a more abrupt way can help readers remember the changes wit-
nessed and hence make sense of the phenomenon.

Attracting attention with dynamic visualization variables

In a previous section, we introduced the notions of temporal scale and tem-
poral resolution as main characteristics of temporal animated maps. Another
framework to describe animations and the changes they contain was developed
by DiBiase, MacEachren and others [14, 42, 43]. They called ”dynamic visual
variables” a set of animation characteristics constituted by duration, rate of
change, order, display date, frequency and synchronization. Later, Blok [13]
used this framework and renamed a more limited set “dynamic visualization
variables” (DVV) which we consider slightly more appropriate.

This framework is useful to study the characteristics of animations. However,
it is not as useful for vector-based exploratory temporal animated mapping ap-
plications as it can be for non-temporal animations. In effect, in an exploratory
context using simple animation techniques, most of these variables would be
fixed as the animated display simply reflects the data and its temporal steps.
Nevertheless, use can be made of dynamic visualization variables to empha-
size change. We consider, for example, using a flashing symbol to attract the
viewer’s attention on particular events. We therefore consider using the DVVs
as special effects for attracting attention more than as a framework explaining
the characteristics of our animations.

2.8.8 Complementarity of small-multiples and alternative views

As we mentioned, remembering what one has seen in a dynamic display is dif-
ficult for many animated map readers. Series of small static maps showing
successive chosen representations of the process can be very useful to help the
viewer build a mental model of the dynamics he is observing. Such series of
maps are called small-multiples. The biggest advantage of small-multiples may
be for comparing the states of one or several phenomena at different moments
of time. Animation is not well suited for such a task but it is more effective, to
study the dynamics of change and to show many small changes [72].

Non spatial representations of datasets, like small-multiples, can be very use-
fully combined with animated maps. Spatial depictions are effective means to
visualize the distribution of phenomena in space. Animation of such depictions
is useful to represent the evolution over time of such phenomena. However, the
attribute dimension (i.e., the ’what’ of the where-when-what triad) can often

29

2.9. Conclusion

not be well represented on a map display and this is even truer about anima-
tion. For this reason, alternative views of the data are often recommended.
For instance, if a researcher is interested in the detailed evolution of popula-
tion density in a series of administrative entities, an animated choropleth map
alone is not a suited solution. It has been demonstrated that change in color
at fixed locations is not an effective means to visualize attribute change [17].
In this case, a useful alternative view of the data would be a line-plot of the
population densities with time on the x axis, density on the y axis and multi-
ple lines representing the administrative entities. Useful guidelines for repre-
senting spatio-temporal phenomena can be found in Monmonnier’s [47] article
“Strategies for the visualization of geographic time-series data.”

2.9 Conclusion

In the present chapter, we have established animated mapping within the field
of Geovisualization and provided frameworks to understand animated maps
and the types of tasks they can be used for. We used our study of their prin-
ciples, advantages and limitations to propose a set of recommendations for the
design of a visualization environment using animated map displays.

The basic features that such an environment should have are temporal legends
and a way to interactively control the temporal dimension. The time-slider is
recommended for such a task and argued to be a very powerful and flexible in-
teractive tool for exploratory animated mapping. Other necessary features are
simplified graphical representations, control of the temporal scale (or speed) of
the animation and selection of the temporal extent of the data to load. In addi-
tion, dynamic visualization variables can be used to emphasize change and se-
ries of small-multiples as well as alternate views of the data are recommended
as complementary to animated maps. As announced, the recommended set of
features is generic and would be suitable to build animated mapping applica-
tions for data exploration as well as for presenting the data to wider audiences
on the internet.

30

Chapter 3

Technical choices: WMS, SVG
and RIMapperWMS

3.1 Introduction

The main objective of our research is to look into possibilities, both theoreti-
cal and practical of combining interactive vector graphics animation and Dis-
tributed GIServices. In the present section, we are first going to justify our
technical choices of Distributed GIService framework and graphics format. To
do so, we will show that WMS and SVG possess the required capabilities for our
setup and that they are equivalent or superior to any comparable frameworks
for the same purposes. Then we will determine whether, from a theoretical –
or specification – point of view, it is possible to combine the two chosen compo-
nents.

The basic requirements for the two components are as follows:

• On the server-side, we need a standard compliant, widely implemented,
distributed service framework possessing a specification not only for the
spatial and attribute components of the data but also its temporal compo-
nent.

• On the client side, we need a vector graphics format supported on the Web
that allows to interactively manipulate animations.

After this, we will briefly study four existing WMS implementations which al-
ready render SVG maps but without yielding any animation. We will explain
why the RIMapperWMS implementation is the best suited of the four candi-
dates to be extended for our purpose.

31

3.2. Why OGC’s WMS as distributed GIService?

3.2 Why OGC’s WMS as distributed GIService?

New possibilities for sharing geospatial data and geoprocessing capabilities
came forth with the uprise of internet technologies. Web clients could com-
municate with map servers which in turn were linked to data stores. Yet, it
is only with the efforts towards interoperability and standardization that mul-
tiple map products could be combined together. The Open Geospatial Consor-
tium (OGC) is the leader and centralizing organization in this interoperability
enterprise [63]. The specifications for standardization are developed in an open
process involving private parties, large geosoftware companies and academic
institutions.

The resulting recommendations enhance the sharing of geospatial data and
geoprocessing software components because standardization makes it easier to
combine products. An increasing number of private and governmental agen-
cies decide to comply to OGC’s standards because of the enhanced possibilities.
Products distributed in the OGC framework are either freely shared or sold
following traditional commercial ways.

The joint effort is responsible for a number of Open Web Services (OWS) speci-
fications among which the most widely adopted is the Web Map Service (WMS)
specification [36].

3.2.1 Web Map Service in a nutshell

OGC’s Web Map Service, also popular under its WMS acronym, is the standard
for mapping and visualization. The implementation specification is mature and
well documented [61]. This is demonstrated by the fact that it has been adopted
by the International Standardization Organization (ISO) as one of its standards
(ISO 19128) [31].

Like all computer networking standards, WMS specifies how the interfaces of
services should be defined. So doing, the exchange mechanisms between the
three main components of Geo Web services, web clients, map servers and data
servers (see Figure 3.1) are standardized. Service developers remain free to
store or process data according to methods that suit their internal needs and
resources.

The big advantage of WMS is that “software conforming to the WMS specifica-
tion, using ordinary Web browsers, is able to automatically overlay map images
obtained from multiple dissimilar map servers, regardless of map scale, pro-
jection, earth coordinate system or digital format” [59]. Furthermore, one ore
more of these map images may well be the result of complex geoprocessing. This
leads to important time and financial gains.

After introducing what WMS offers to service providers and thus to end users,
lets briefly review how WMS works? There are three basic types of requests
that can be asked to WMS implementation: the GetCapabilities request,

32

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

Figure 3.1: Three-tier basic WMS setup (from [59])

the GetMap request and the GetFeatureInfo request. The first two are com-
pulsory for OGC compliance and the last is optional. Köbben and others [36]
inform us on what these requests do:

GetCapabilities The GetCapabilities request is “used by client software
to ask for the capabilities of the service: what layers are available, what
projection system can the maps be delivered in, what output formats can
be requested, etcetera.”

GetMap Based on the response to a GetCapabilities, “the GetMap is is-
sued to ask for an actual map. Because the client knows the possibilities
of the service from the GetCapabilities response, it can issue its re-
quest with specific parameters asking for example for one or more layers
of information.”

GetFeatureInfo The optional GetFeatureInfo mechanism is provided by
“services that advertise layers of data as queryable.” It is used to “find
attribute values in the underlying data.”

Each request is entered by the client in the form of a Uniform Resource Locators
(URL) which contains appropriate parameters. The map server replies to the
requests in the following ways: To a GetCapabilities, it responds an XML
document specifying the required information. To a GetMap, it renders a map in
the specified graphic format, possibly including legends. To a GetFeatureInfo
request, which queries for values of attributes for specific locations in the map,
the map server reports the attribute values back.

33

3.2. Why OGC’s WMS as distributed GIService?

3.2.2 WMS support and format for the Time dimension

Many projects exist which build animations using the WMS framework for at
least part of the process (for example, see [48]). Most of them end up using
Google Earth or common media player software (such as Windows Media Player
or Quick Time) to render the animations. The present interest for binding an-
imations to distributed services is shown by the fact that OGC published Eric
LaMar’s [41] project to extend the WMS specification for animation services on
the same Web page as the WMS specification.1

We have shown that OGC’s WMS is presently the most suited candidate for
building a map server based on standardized distributed services. The next
step, which is the subject of the present subsection, is to determine whether
WMS’s specification offers an appropriate standard for the sharing of data con-
taining a temporal dimension.

The current version of WMS Implementation Specification [61], version 1.3.0,
includes support for the temporal dimension of data. A third level subsection
of the specification is named “Temporal CS”. It is part of the specification on
“Coordinate systems” which does not seem logical. For this matter, it is our im-
pression that the 1.1.1 specification [60] was better structured and used a more
appropriate terminology: the broader section was termed “Common Request
Parameters” and the unit on time was called “Time Dimension”. These changes
and this confusion seems to show that perhaps the norm for time is not totally
mature yet.

However, the information and further references offered for the “Temporal CS”
seem complete and highly relevant for our purpose. It says that “A WMS
may announce available times in its service metadata [(GetCapabilities)],
and the GetMap operation includes a parameter for requesting” georeferrenced
graphic results for particular times. Two “normative” annex documents are
referred to: Annex C, called ‘Handling multi-dimensional data’ defines the op-
tions of requesting single values, lists of values or intervals for different types
of multi-dimensional data. The dimensions in this document refer to “Time,
Elevation and sample dimensions.” Annex D, called ‘Web Map Service profile of
ISO 8601’ specifies the “format of a time string.”

For animated mapping, we are obviously interested in the Time dimension in-
troduced in annex C as one of the multiple dimensions. GetCapabilities
outputs and GetMap URL requests can contain a dimension element for which
the set of mandatory parameters are name, units and extent. Optional param-
eters also comprise: a default value for the dimension, whether multiple value
requests are allowed and whether nearest value rendering and current time
values are possible. Most of these parameters are generic for all ’dimensions’
but the ’current’ parameter is obviously specifically temporal.

1Although the issues dealt with in this project are not the same as those we are interested in
(because it is centered on raster data), the fact that OGC publishes an unofficial project on its
main implementation page shows the existing interest for animations in the WMS framework.

34

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

The possibility to request and render time intervals is the most interesting
feature of the dimension element. It allows a user to specify the temporal extent
of the animation he wants to view. The desired temporal resolution for the
extent requested can be further specified. The following line shows an example
of a temporal interval.

2000-07-01/2000-07-31/P1D

The temporal interval shown here starts on the first of July 2000 and ends on
the 31st. The P1D expression shows the periodicity of the measurements. We
will see more on the format in which this information is conveyed below.

A framework for offering and requesting time related data is thus available and
we can now review the format in which temporal parameters should be written.
Annex D “specifies the encoding of moments and periods in time to allow the
Web Map Service to support temporal data descriptions and requests.” As its
title suggests, the standard is based upon ISO 8601:2000 recommendation. It
extends this standard by “defining a syntax for expressing in a single string the
start, end and periodicity of a data collection.” We will now show what the basic
syntax elements are for specifying time moments and periodicity.

“All times should be expressed in Coordinated Universal Time (UTC)” although
local time issues are taken care of by the standard. The basic way of expressing
time uses a string to specify century, year, month, day, hour, minute, seconds
and optionally a decimal point followed by fractions of seconds. Here below
figures a schema and an example of such a string:

Schema: ccyy-mm-ddThh:mm:ss.sssZ

Example: 2009-01-28T13:53:41.007Z

Cases for time AD are taken care of by using the ‘-’ sign and to represent time
from a distant past, the number of digits for the year is extendable. For exam-
ple, -1500000000 corresponds to 150 million years AD, the Jurassic period.

The standard indicates “the time resolution of the available data” in a very com-
pact way which uses letters to abbreviate temporal characteristics. Table 3.1
shows examples of the expressions and their meaning.

P1Y → Data for every year

P1M10D → Data for every 1 month plus 10 days

PT1.5S → Data for every 1.5 seconds

Table 3.1: Symbols for time periods (adapted from [61]).

35

3.3. Why choose SVG as a vector graphics format?

Now that we have seen the syntax, we can explore what this would look like
in the communication language between clients, map servers and data servers.
The following is an example of a dimension element for time as it could figure
in a GetCapabilities document:

<Dimension name="time" units="ISO8601" default="2003-10-17"
>1996-01-01/2003-10-17/P1D</Dimension>

This dimension element specifies that there is a time dimension in the proposed
data, that its units are as recommended in the ISO 8601 standard, the default
date (if the client does not specify which date he wants is the 17th of October
2003. The full extent available is from 01.01.1996 to 17.10.2003 with a daily
temporal resolution (P1D).

In a GetMap request, the parameters found in table 3.2 might be specified for
an animation in the mpeg video format.

Table 3.2: GetMap request parameters incl. TIME (adapted from [61]).

Parameters Explanation

VERSION=1.3.0 Version of the WMS specification

REQUEST=GetMap Type of request

LAYERS=ozone Name of layer

CRS=CRS:84 Coordinate reference system

BBOX=-180,-90,180,90 Bounding box in lat/long

WIDTH=600 Width of the output image

HEIGHT=300 Height of the output image

TIME=2000-07-01/2000-07-31/P1D Time interval and periodicity

FORMAT=video/mpeg Output graphical format

3.3 Why choose SVG as a vector graphics format?

In search for a graphical format suitable for the animated mapping platform we
intend to develop, we started by establishing what were the requirements or our
needs. Firstly, the graphical format should support vector shapes and be well
suited for cartographic purposes. Secondly, it should be well supported on the
internet and run in web browsers because the internet is the means we chose
to disseminate animated maps whether the final user is the general public or
field experts. Thirdly, the graphics engine should be capable of multiple types of
animation, and, fourthly, it should be possible to program functions for the user
to be able to interactively control the temporal dimension of the animation.

36

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

Before studying the candidate graphical formats, we want to remind the reader
of our choice of building our system following a thin-client architecture. The
reason for this choice is that the setup should be usable both for data explo-
ration and dissemination of animated maps on the WWW. For exploration pur-
poses exclusively, it would have been possible to develop a desktop program
working in a thick-client distributed architecture, only using the internet to
access data. However, since we also intended to use the Web to disseminate an-
imated maps, it made sense to go for an architecture suitable for both purposes
at once, hence, a thin-client setup.

Two main vector graphics format were envisaged to render the type of inter-
active animations that we need: Adobe Flash (SWF) (originally developed by
Macromedia) and Scalable Vector Graphics, usually referred to as SVG. An-
dreas Neumann [54] did a comparison of SVG and SWF in 2002. The main dif-
ferences between the two formats appear well in this document but the author
judged that the detailed comparison of features is outdated. Without going into
a detailed comparison of the capabilities of these two formats, we will present
them and expose the reasons why we chose to work with SVG instead rather
than with Flash.

Flash, whose web publishing output is actually SWF, was the first “widely us-
able vector graphics format” for the internet and “is still the most popular.”
Flash graphics can be drawn and animated using a powerful authoring tool
whose name is also Adobe Flash. However, this environment is not very flexible
and cartographers often prefer to use the scripting capabilities of ActionScript.
This scripting method is also necessary to add interactivity to the graphics. An-
other framework, Adobe Flex, provides possibilities to bind the vector graphics
to a database. The format is widely supported in web browsers provided that
the user installs the Adobe Flash Player plug-in.

However, despite all these advantages, Flash also has serious limitations for
cartographic use. First of all, Flash is a proprietary format developed by one
single company whose biggest category of customers are advertisers. This im-
plies that cartographers might not have enough influence to propose or prevent
new developments that would serve or harm their interests. Secondly, Flash is
a binary format which is not human readable. Thus, except for Adobe’s costly
authoring tools, there is no effective means to develop high quality products.
In addition, its binary characteristic also makes it closed to search engines.
Text items present in maps cannot be found by this means. Finally, unlike the
authoring tools, the SWF format itself is poorly documented [3].

Regarding cartographic use of Flash, Neumann and Winter [56] consider that
it has been used by cartographers to develop “useful interactive cartographic
applications” but that, after more than a decade of existence (the statement the
authors made in 2003 remains true today), “there are still few online examples
of Flash-based mapping applications.” However, in contrast with SVG, Flash
has been used to publish interactive animated maps on the internet. In effect,
Mark Harrower and his students developed a series of animations with a rather
low level of interactivity [27]

37

3.3. Why choose SVG as a vector graphics format?

To present SVG’s qualities, we will start by saying that, despite exceptions such
as the one we have just presented, it is generally preferred to Flash by cartog-
raphers who want to publish their work on the internet and by Web GIS appli-
cations developers. To check this statement, one could have a look at the large
number of cartographic papers presented at the annual SVG conferences [62].
Neumann and Winter [53] defend that “with the rise of SVG, there is for the
first time a technology at hand that allows to represent all graphical elements
producable by graphics and cartographic-software with the additional advan-
tages of high interaction possibilities and animation, all based on open and
standardized file formats and programming languages.” Furthermore, Peng
and Zhang [65] consider that it could become one of the “key standard technolo-
gies to facilitate the development of Web Geoprocessing Services.” But why do
cartographers like SVG so much?

SVG is developed at the W3C2 as an open standard by a joint effort of partic-
ipants from a variety of backgrounds. These stake-holders include cartogra-
phers which implies that although SVG was not especially designed for cartog-
raphy, “the working group had cartographic applications in mind from the be-
ginning” [56]. Coordinate systems, for example, are well supported in SVG. The
openness of the process through which SVG is developed is not the only way
that the format is open. The SVG specification is very well documented [77].
SVG is XML based, human readable and SVG text elements can be found by
Web search engines. Its XML structure makes it particularly easy to integrate
within complex Web projects.

SVG’s syntax is clear, simple and powerful. It can be edited by any text edi-
tor. Graphical authoring tools also exist but these are not as powerful as the
ones developed by commercial companies (such as Macromedia, which devel-
oped Flash, now owned by Adobe) and do not include possibilities for animation
and interactivity. SVG’s syntax is particularly suited to create vector shapes
from objects contained in databases [81] which is one of our main concerns in
this research. We will later present the way SVG is scripted.

However, SVG, like Flash, is not free of problems. The biggest tooth ache of
the SVG community does not concern the specification itself, nor the author-
ing tools, but the browser implementations. To be viewed by Web users, SVG
graphics need to be supported by his Web browser. The only Web browser that
supports close to the full SVG specification is Opera, a browser specialized in
mobile services. At the time of writing, SVG is still not supported by the most
widely spread browser, Microsoft’s Internet Explorer. Mozilla Firefox natively
supports static SVG and interaction but no animation. Plug-ins exist for both
these browsers and enables a user to benefit from almost the full SVG specifi-
cation. Apart from this browser situation, SVG has some limitations that are
related to the fact that, as we said, it was not developed specifically for cartog-
raphy. Neumann and Winter, as well as Dunfey and others [18], discuss some
of these shortcomings but offer solutions to work around them.

2W3C stands for World Wide Web Consortium, which is the standardizing organization for
the Web

38

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

Weighing the pros and cons of Flash and SVG, our choice went to the latter
because of several of the advantages we just presented. Among these, the facts
that it is generally preferred to Flash by cartographers and that cartographers’
opinions are considered in new developments, that it is more open in many
ways, that free or cheap solutions are available to develop high quality complex
applications and that its XML structure promises high interoperability with
other applications, were among the arguments that we considered. However,
the determinant argument is probably the adequacy of SVG’s syntax for binding
graphics to a database and this is particularly true about the syntax used to
animate vector objects. We decided that these advantages outweighed SVG’s
limitations, including that of the browser situation. One reason that justifies
this decision is the fact that the output of the prototype we intend to develop
is destined to field experts rather than to the general public. We consider that
experts having a strong interest in the phenomena that might be visualized
with our platform will be sufficiently motivated to download another browser
or install a plug-in. It must however be said that if the present project had
been developed for economic purposes and not for academic research, our choice
might have been different.

3.4 Interactivity and animation in SVG

There are many ways to provide interactive control over SVG graphics and
there are two main ways vector shapes and their attributes can be animated.
In this section, after a short introduction on SVG’s syntax, we will present the
interactive possibilities offered by scripting along with the first type of anima-
tion: scripted animation. After that, the second animation technique possible
in SVG, which uses the SMIL language will be treated.

3.4.1 Short introduction to SVG’s syntax

Before treating interactivity and animation, we need to give the reader a basic
idea of how SVG is coded. The following code (adapted from an example found
in [56] shows a basic SVG file containing four elements. Figure 3.2 below shows
the graphical result one would view in a Web browser if the file was loaded.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC " //W3C//DTD SVG 20010904//EN"

"http://www.w3.org/TR/2001/REC SVG 20010904/DTD/
svg10.dtd">

<svg width="500" height="400" xmlns=
"http://www.w3.org/2000/svg">
<desc>SVG Hello World example</desc>
<circle cx="200" cy="200" r="100"

style="fill:yellow; stroke:red; stroke-width:10" />
<text x="150" y="350" style="font-size:40pt"

39

3.4. Interactivity and animation in SVG

>Hello World</text>
<polygon points="170,250 215,150 220,100 300,210 190,260"

style="fill:blue ;
stroke:lime ; stroke-width:5"/>

</svg>

One can see how simple it is to script a polygon in SVG. Three of the four
elements have a style label that contributes to describe characteristics of the
shape. The style label is one of many attributes that shapes can have. We will
come back to these attributes repeatedly.

3.4.2 Scripting interactivity and animations

Interactivity comes in many different forms in SVG: event-handling, hyper-
links, scripting, SMIL events and more [56]. Here, we will only discuss the
advantages provided by scripting. Although “SVG is designed to be language in-
dependent,” [56] it is very often used in combination with ECMA-Script (which
is the standardized version of JavaScript). Because SVG is XML, every element
and each of its attributes “can be accessed and manipulated using script” [56].
This offers developers great flexibility and power to program the interactive
behavior they desire.

ECMA-Script can be used to animate SVG graphics. Köbben developed an in-
teractive animation simulating flood risks in Kathmandu [35]. His applica-
tion makes blue polygons symbolizing water visible or invisible as a clock runs.
They are visible at real-world times when it is predicted that water will cover
an area and invisible when it is predicted that water will not yet have reached
or already have subsided from the area. Leaving interactive control aside, the
code actually provoking the animation is very simple. It is constituted of a time
engine and of a mechanism to make the flood layers visible or invisible.

To elaborate a proof of concept for our prototype on moving objects, we modified
Köbben’s application. While his application simply set the visibility attribute
of layers to “visible” or “hidden”, our application set the position of an object to
mimic its movement. The code below shows the few lines, which, bound to the
time-engine, animates the object:

function setPosition(time)
{
var i = 0
for (i = 0; i < numberOfPoints; i++)

{
if (t_in[i] <= time && t_out[i] > time)

{
svgDocument.getElementById("MovingPoint")

.setAttributeNS(null, "cx", xPos[i]);

40

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

svgDocument.getElementById("MovingPoint")
.setAttributeNS(null, "cy", yPos[i]);

}
}

}

The setPosition function of the above code states that, if the current time of the
clock is larger than (or equal to) the starting time (t in) of a position the point
took and it is smaller than the end time (t out) of the same position, the x-y
position of the SVG object called “Moving Point” is set to values called “xPos”
and “yPos” (found in database columns). One disadvantage of this way of rep-
resenting the movement of objects is that if only few positions of the trajectory
were recorded, the object will appear to move in leaps. To fix this, supplemen-
tary position coordinates would need to be calculated applying spatio-temporal
interpolation.

Hello World
Figure 3.2: Simple SVG graphics example

3.4.3 SVG and SMIL animation

The Synchronized Multimedia Integration Language (SMIL) is another XML-
based language developed and recommended by the W3C. Like SVG, it is well
documented in a detailed specification [79]. SVG is called a called the host
language in the way it makes use of SMIL. This status allows SVG developers
to “amend or extend SMIL Animation in appropriate circumstances” [82].

SMIL’s declarative syntax is extremely compact and powerful. The following
code shows a simple animate element.

<animate attributeName="width"
from="100px" to="800px" begin="click" dur="7s" />

This animate element could be embedded within an SVG shape such as a rect-
angle. Starting at the moment the user clicks the shape (event), a smooth

41

3.4. Interactivity and animation in SVG

animation will showing the width of the shape increasing from 100 pixels to
800 pixels in a duration of 7 seconds. The fact that the syntax is declarative
implies that it is generally not necessary to understand how SVG rendering en-
gines achieve the animation [82]. It is enough for someone using SVG to know
the result he desires and to declare it following using proper code.

There are five different types of declarative animation in SVG from which four
are borrowed from SMIL. The fifth, animateTransform was designed specif-
ically to transform shapes in SVG. A detailed specification for SVG animation
which shows how all elements work and how SVG hosts SMIL can be found on
the W3C’s website [78]. Below figures the five types of animations followed by
the definitions given by Watt and others [82]:

• animate—A general-purpose animation element that allows time-based
or event-based changes in scalar values of SVG attributes

• animateColor—Allows you to modify the values of color-related attributes
and properties

• animateMotion—Allows animations that move an object along a motion
path

• animateTransform—Allows you to create animated transforms, for ex-
ample, by adjusting the value of a transform attribute

• set—Allows stepwise changes of attribute or property values

The general animate element can often be used instead of the more sophisti-
cated functions by specifying which attribute should be animated.

Figure 3.3: Example of the power of SMIL for morphed animations (from [55])

We did a combined study of the possibilities offered by these functions and
the different types of animation that have been used in vector animated map-
ping. This study convinced us that the set of animation possibilities is com-
plete. All graphical attributes of SVG, including spatial attributes, can be ani-
mated in controllable ways. We have already reported that Neumann and Win-
ter [56] consider SVG is adequate for static mapping, which means that all of
Bertin’s [11] visual variables can be rendered. The most difficult elements to
animate are polygons changing shapes. This type of shape merging is called
path-morphing in SVG. Neumann and Winter [55] provide an example showing

42

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

the power of SVG SMIL animation for morphs. Figure 3.3 above shows snap-
shots of a morphing animation in which a polygon representing the territory of
Switzerland is morphed into a polygon representing Austria.

Apart from all the visual variables being animatable, effects using the dy-
namic visualization variables3 introduced by DiBiase, MacEachren and oth-
ers [14, 42, 43], i.e., duration, rate of change, order, display date, frequency and
synchronization, can all be realized using SVG and SMIL animation.

For many animated mapping cases, the biggest advantage offered by SMIL over
scripted animation might not be the simple and powerful syntax but the pos-
sibility for interpolation. In effect, in the examples we saw earlier, the width
of an object regularly increased and the shape of a polygon smoothly changed
through the animation.4 Interpolation can even be modeled to be non-linear
and follow a “cubic Bezier spline function.” While complex Bezier functions are
beyond the scope of this thesis, we will study in depth and use the possibilities
offered by interpolation and benchmarks to design our prototype implementa-
tion.

To further understand how animation works with SMIL and SVG, let’s look
at it from a temporal point of view. SVG files have an internal clock that is
switched when the file finishes to load. All the temporal commands can be
considered as projected on a time-line starting at that moment. There are two
generic temporal attributes in SMIL animations: begin and dur and . The
begin attribute specifies the event or moment when an animation should start
running. If omitted, the animation will start when the file finishes loading.
The dur attribute specifies how long this particular animation should take to
unfold. In addition, different techniques exist to specify what the animation
engine should do during that lapse of time. Every animation is linked to an
attribute and values must be entered to tell the rendering system what to do.
There are several ways in which one can specifies these values; we will briefly
review two. The from and to attributes can be used when only two values need
to be entered. A supplementary by attribute can be added. Another way is
using the keyTimes/values method.

<circle cx="200" cy="200" r="100"
style="fill:yellow; stroke:red; stroke-width:10" >
<animateTransform attributeName="transform"

type="scale"
keyTimes="0; 0.2; 0.5; 0.8; 1"
values="1.5; 4; 4.5; 4; 1.5" dur="5s" />

</circle>

Using this method, one denotes values for an attribute which correspond to
specified moments (keyTimes). It is particularly useful for data driven anima-

3As explained on p.29, the authors mentioned here had named the class ‘dynamic visual vari-
able’.

4It is possible to make this evolution match attribute and temporal benchmarks as we will
see.

43

3.5. Compatibility between the WMS and SVG specifications

tions! We will explain more in detail how to use it in the second part of our
work.

Many characteristics and possibilities of SVG and SMIL animations have not
been covered here, such as animation chaining or multiple animation on a sin-
gle SVG element. SMIL animation is easier to use and more powerful than
scripted animation but scripting is more flexible. We foresee that in many
cases, the two animation techniques might be advantageously used together,
the latter patching up the limitations of the prior. One of our main objectives
is to look into possibilities to interactively control the time dimension of anima-
tions. We cannot review here the mechanism that we foresee to achieve such
high level interactivity. This is one of the main issues we will need to tackle
in our implementation attempt. We can however state that the authors of SVG
Unleashed [82] assert that the capabilities of SMIL can be supplemented by
scripting which should enable us to gain access over the temporal logic.

3.5 Compatibility between the WMS and SVG speci-
fications

As we have seen, the WMS specification for time is complete and, likewise, SVG
offers a variety of animation types. SVG can be used to animate all cartographic
visual variables related to the spatial and attribute dimensions of the data. The
dynamic representations can be designed so as to make use of all the dynamic
visualization variables identified for animated mapping. The final question to
determine whether our two technologies can be used for our purpose is: can the
WMS Time dimension and SVG animation be combined. This question further
develops into the following: does the WMS specification allow SVG as a graphi-
cal output format? and, from a practical point of view, is it possible to convert the
time stamps in the ISO 8601 format to a format usable within SVG animations.

The first question is easy to answer. Yes, SVG is one of the two “graphic element
formats”5 that the WMS specification allows and recommends. Flash is not
mentioned as one of the graphic element formats allowed.

To assess the practical compatibility of SVG animation with the extended ISO
8601 standard, lets examine how the two recommendations for time compare.
We will first focus on SMIL animations and then shortly discuss scripted ani-
mations as well.

Time stamps stored to record real-world processes would obviously be in real-
world time. To the contrary, time in SVG SMIL is display time. We saw that the
central time features in SVG are the begin and dur attributes. We also saw
the very useful keyTimes attribute (keyTimes / values method) for anima-
tions having multiple data driven steps. A conversion is needed to transform

5“Graphic element format” is the name given to vector graphics format in the WMS specifica-
tion.

44

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

real-world time stamps into values that can fit into the SVG SMIL animation
keyTimes attribute. Lets see whether this task seems possible to achieve...

We will start by giving an example to try and convert moving object data into
a SMIL animation. For a real-world phenomenon, we have t values for each
recorded state of the object (attribute, position or change in geometry). We want
to use these values within a SMIL animation using the keyTimes / values
method which should be in the form of listing that follows. Real-world time
stamps such as 2009-01-12T14:42:10Z should be converted in a way that
they can be integrated in a SMIL animation.

<circle id=’Moving Object’ r=’10’ >
<animate attributeName=’cx’ keyTimes=’? ; ? ; ? ; ? ; ?’

values=’list of x positions’ dur = ’?’ />
<animate attributeName=’cy’ keyTimes=’? ; ? ; ? ; ? ; ?’

values=’list of y positions’ dur = ’?’ />
</circle>

There are two different animate elements, one for the x attribute spatial at-
tribute and one for the y. The begin attribute is omitted here which means
that the animation will start as the file finishes loading. As for the dur at-
tributes, their values should be the same and should reflect the temporal scale
- or the speed - at which the user wants to visualize the animation. It is thus
not directly related to the temporal extent in the data. The keyTimes attribute
is the attribute in which the real-world time stamps must be converted. In the
keyTimes method, the first ’keyTime’ must always be 0 and the last always 1.
How can this conversion be achieved? This is a question we will try to solve in
chapter 5.

Now that we have shown what can be done to combine WMS Time dimen-
sion (WMS T) and SMIL animation, lets see what would be necessary to use
scripted animations. This latter type of animation is more flexible than SMIL.
The keyTimes / values method is not used and the time moments need not
be converted into a display time format. In the work done by Köbben [35] in
his exploration of the use of SVG scripted animation for mapping, the author
developed a time engine which use a time format requiring fewer conversion
operations from real-world time to display-time.6

3.6 Choosing a platform to extend: RIMapperWMS

In the previous sections, we have shown that, in theory, WMS and SVG can be
used and combined to develop a standard compliant animated mapping envi-
ronment for the internet. The next step in our contribution is logically to tryout
this combination practically. Because the time available for this research would

6The reader may refer to appendix B to see parts of the code and explanations.

45

3.7. Conclusion

not permit to develop a complete system from a to z, we went in search for an al-
ready existing WMS system that could be extended to output SVG interactively
controllable animations.

Four WMS implementations retained our attention in our search, UMN Map
Server [45], Geo Server [23], SUAS MapServer [10] and RIMapperWMS. A brief
study of these setups showed that among the four, only RIMapperWMS treats
SVG as an interactive vector graphics format. The other three, as Köbben [34]
already said about Map Server and Geo Server, treat the SVG output as “just
another graphics format” which implies that, like for “GIF and JPEG output,
the maps are basically pictures only, with no interactivity.” This means among
other drawbacks, that the geographical objects cannot be selected and manipu-
lated in useful ways and, most importantly for our purpose, cannot be animated
on an object basis (only on frame-by-frame basis).

Unlike the other implementations, RIMapperWMS takes advantage of the pos-
sibility to combine SVG with ECMA-Script to produce interactive outputs. As
Köbben says, using these possibilities, it is “possible to build an SVG map,
or rather an SVG application, that includes its own graphical GUI.” Such a
setup, with a built-in graphical user interface appeared to be excellent way of
designing a thin-client animated mapper for the Web. In addition, RIMapper
is already implemented with a database backend, which is one of the archi-
tectural requirements that we had. As potential risks, we need to mention that
Köbben [35] considers the setup to be “not well scalable” because “it outputs the
whole data extent in one client-side SVG file.”7 Because the advantages of the
setup easily outweigh the risks and because solutions to limitations could fur-
ther be developped, we decided to try and extend RIMapperWMS to output SVG
interactive animated maps. In chapters 5 and 6, we will present more in detail
how RIMapperWMS is built before designing the needed extensions for storage
of standard-compliant time stamps on the database side and for animating the
graphics on the client-side.

3.7 Conclusion

In conclusion, we can say that the Open Geospatial Consortium’s WMS stan-
dard is the most suited Distributed services framework for our purpose because
OGC is the standardization organization for Geo Web Services, because the
WMS implementation specification is mature and well documented and because
it also offers a standard for describing and sharing temporal moments and in-
tervals. The SVG specification, on the other side, seems to be the most promis-
ing vector graphics framework to develop an animated mapping platform and
this for several reasons we introduced. Firstly, and perhaps most importantly,
unlike Flash, its main competitor, it is recommended by the WMS specification
as one of the vector formats to be used. Secondly, the declarative structure of

7This problem could however be solved by using the Asynchronous JavaScript and
XML (AJAX) technique.

46

Chapter 3. Technical choices: WMS, SVG and RIMapperWMS

its SMIL animation engine seems to be well suited for data driven animations.
Thirdly, SVG is well suited for cartography and developed to support cartogra-
phers’ needs. Finally, it is based on an open and well documented standard.

We also showed that WMS Time dimension and SVG could theoretically be
combined to output animated maps. The two types of animation possible in SVG
(i.e., SMIL and scripted animations) can be achieved using as time components,
converted real-world time stamps originally stored in a format compliant with
the WMS Time dimension standard.

Finally, in search for an existing WMS implementation yielding SVG inter-
active maps, we identified RIMapperWMS as the most promising platform to
extend. The RIMapper setup, although it does not yet produce animated re-
sults, is designed to output SVG vector-based mapping application with built-in
graphical user interfaces.

47

3.7. Conclusion

48

Chapter 4

Moving objects visualization
and iceberg use-case analysis

4.1 Towards a visualization environment for moving
objects

After identifying requirements for exploratory animated mapping in chapter
2 and determining which technical frameworks to use to develop a suited vi-
sualization environment in chapter 3, we now enter the second phase of this
research. As the time available is too short to develop a generic animated map-
ping platform, we need to focus our attention on a particular application. With
the objective of developing a prototype animated mapping platform, we will fol-
low system development steps as they are presented in the Unified Process (UP)
framework [8]. Figure 1.3 (p.8), that we already saw, shows the five workflows
recommended in UP system development: requirements, analysis, design, im-
plementation and test.

One of the main tasks the animation technique has been recommended for is
moving object visualization. We therefore intend to develop a prototype appli-
cation for the visualization of movement dynamics of individualized entities.
As Dodge and others’ [16] article shows, various types of moving object data
exist. While we plan to develop an application which could be used for all these
movement types, we will further focus our design and implementation to suit
the needs of a chosen case-study.

The case-study we decide to develop our animated mapping system for is iceberg
movement visualization. Iceberg dynamics is a phenomenon of great interest
for several natural and applied sciences and has implications on human activi-
ties such as navigation and oil-mining. Because these dynamics are related to
external natural processes, seasons in particular, we can expect to find in inter-
esting patterns in iceberg tracking data such. A huge data collection is made
freely accessible by the (American) National Ice Center (NIC) [49] containing
all recorded iceberg positions since the end of the 1970s.

49

4.2. Conceptual framework for moving object data

The present chapter is structured in three parts. First, a framework for moving
object data is presented. Second, the ice-berg case-study is introduced - which
can be considered to be a use-case, as understood in UP terminology. Third, the
iceberg use-case is summarized in requirements and these requirements are
further analyzed. This objective of the final requirement analysis is to inform
the design of the system, object of the following chapter.

4.2 Conceptual framework for moving object data

4.2.1 Conceptualizing object dynamics

In their article Designing visual analytics methods for massive collections of
movement data, Andrienko and Andrienko [5] provide a conceptual framework
for understanding movement data and related patterns. This framework is par-
ticularly suited for iceberg movement exploration and we will therefore review
some of its main concepts.1 We will start by “considering the structure and
properties of movement data”, which leads to two different approaches to the
dynamics inherent to moving objects. Then, we will “define potentially signifi-
cant types of patterns” that we might encounter for example in our visualization
of iceberg movement.

The dynamics inherent to the movement of multiple entities can be considered
from two different perspectives. On the one hand, one can conceptualize the
overall dynamic behavior as a composite of all the individual dynamics and on
the other hand, the overall dynamic behavior can be seen a time-series of char-
acteristics describing all objects. As the authors state, these two perspectives
“are essentially different”. Different names are therefore given: when the an-
alyst focuses on individual trajectories, they talk about individual movement
behavior (IMB) and when he focuses on snapshots in time of collective char-
acteristics, they talk about momentary collective behavior (MCB). Going from
these two different perspectives to a “holistic view of the movement charac-
teristics of multiple entities”, they call the overall behavior dynamic collective
behavior (DCB). Lets see how the authors define these terms...

Individual movement behavior or IMB is formed of “the changes in posi-
tion and other movement characteristics of an entity over time.” An IMB
has characteristics such as “the path, or trajectory, travelled in space; the
distance travelled; the movement vector; and the variation of speed and
direction.” Figure 4.1 shows a conceptual representation of the notion of
IMB for a single entity.

Momentary collective behavior or MCB represent the “movement charac-
teristics of a set of entities at some single time moment.” These char-

1Dodge and others [16] attempt to develop a generic framework or taxonomy for patterns in
moving object data. However, because their framework aims at a high level of generality capable
of integrating all types of movement data (including eye-movement!), it is less well applicable to
our topic.

50

Chapter 4. Moving objects visualization and iceberg use-case analysis

Figure 4.1: Illustration of the notion of individual movement behavior (IMB) (left) and momen-
tary collective behavior (MCB) (right) (adpted from [5])

acteristics comprise “the distribution of the entities in space, the spatial
variation of the derivative movement characteristics, and the statistical
distribution of the derivative characteristics over the set of entities.”

Dynamic collective behavior or DCB introduces to “a holistic view of the
movement characteristics of multiple entities over a certain time period.”
DCBs can be the result of viewing an IMB over a set of objects or of viewing
an MCB over time.

In section 2.4.2, we criticized the use made of the word behavior by Andrienko
and Andrienko [4] to describe something static. This criticism may apply partly
here again. They use this term here again in momentary collective behavior to
address, among other “movement characteristics” the “distribution of entities
in space”. The other movement characteristics mentioned are “derivative move-
ment characteristics”. The authors give the following examples of such items
“speed, direction, acceleration, turn, and so on.” The class MCB comprises these
characteristics and distribution.2 The inclusion of the latter in a behavior class
might be criticized in the same way as we did earlier because distribution is
by definition static. However, the ‘M’ of MCB means momentary, this usage of
terms can hardly be criticized. To keep things clear, we propose to adopt the
following rule for our framework. When we use the class MCB to describe a dis-
tribution, we will add the suffix ‘-D’. MCB-D thus means momentary collective
behavior of type distribution. For the other types of MCBs, the term can be used
indiscriminately.

Now that we have solved this terminology problem, we can very simply explain
how the MCB concept can be used. The MCBs are used to “find and measure
similarities and differences between MCBs at different time moments or be-
tween MCBs of different groups of entities.” In the case of MCB-Ds, we there-
fore might compare the positions (one of the momentary collective behaviors)
of a set of objects forming a cluster with the positions of another analog set of
objects – or with the same set of objects but at a different time.

2Andrienko and Andrienko state that very often, because of the frequent large size of datasets,
summary representations of these characteristics will be shown.

51

4.2. Conceptual framework for moving object data

4.2.2 Pattern types for moving object phenomena

As established earlier, a pattern is a description of a behavior. While he pursues
a visualization task, “general pattern types exist [in the mind of an analyst] as
mental schemata.” Furthermore, Andrienko and Andrienko argue that, since
“the analyst looks for constructs that can be associated with known pattern
types,” “these schemata drive the process of visual data analysis”. Once such a
construct is detected, the analyst can further study it using the same or differ-
ent techniques.

Andrienko and Andrienko point out to two different types of patterns: patterns
describing movement characteristics inherent to the data and patterns describ-
ing a connection between movement behaviors and properties of external phe-
nomena. The first type of pattern is called descriptive because it describes the
movement of the objects. The second type of pattern is called connectional be-
cause it attempts to explain the behavior movement by connecting it to other
phenomena. Different types of patterns can be detected when visualizing the
dynamics of a phenomenon. The authors of our article identify four generic
pattern types: “similarity, difference, arrangement and summary”.

Descriptive patterns from IMBs

“The behavior of the IMB over the set of entities can be described by means of
similarity and difference patterns, that is, as groups of entities having similar
IMBs that differ from the IMBs of other groups of entities.” For instance, we
might have a group of objects that are immobile in an area while another group
of objects pass by the same region. Within the two groups, we find similar in-
dividual movement behavior while between the groups, the IMBs are different.
We therefore have different dynamic collective behaviors. Here below is a list of
the different ways in which IMBs can be similar:

• Similarity of overall characteristics

• Co-location in space

• Synchronization in time

• Co-incidence in space and time

Descriptive patterns from MCBs

Now regarding dynamic collective behavior from the perspective of MCBs, be-
sides similarities and differences, the arrangement pattern type can also be
encountered. In Andrienko and Andrienko’s framework, distribution is an in-
stantiation of the general pattern type arrangement. They for example consider
“an increase in the number of entities in some part of the space and a decrease
in other parts” an instantiation of the arrangement pattern. They list and give

52

Chapter 4. Moving objects visualization and iceberg use-case analysis

definitions of eight different pattern types that can be observed while studying
MCBs. In parenthesis figures the general pattern type that is related:

1. Constancy (similarity): the MCB is the same or changes insignificantly
during a time interval.

2. Change (difference): the MCB changes significantly in a given time inter-
val.

3. Trend (arrangement): consistent change in the MCB during a time inter-
val.

4. Fluctuation (arrangement): irregular changes in the MCB during a time
interval.

5. Pattern change or pattern difference (difference): the behavior of the MCB
during a first interval differs from that during a second interval.

6. Repetition (similarity): occurrences of the same patterns of types 1, 3 or 4
or the same pattern sequences at different types of intervals.

7. Periodicity, or regular repetition (similarity and arrangement): occurrences
of the same patterns or pattern sequences at regularly spaced time inter-
vals.

8. Symmetry (similarity and arrangement): opposite trends or pattern se-
quences where the same patterns are arranged in opposite orders.3

For visualization purposes, several of these pattern types are of interest. Be-
sides the basic similarity and difference, we mentioned earlier that we were
particularly interested in detecting and describing the pattern types that are
here termed trends and periodicity. An example of periodicity pattern can be
found in appendix C.

Connectional patterns

Andrienko and Andrienko also provide a framework for the description of con-
nectional patterns and make use of the terms “correlation, influence and struc-
ture.” Although the authors use the term correlation in a broader sense than
the usual statistical correlation term, the two first terms are commonly under-
stood. The last, structure, is defined as “the composition of a complex behavior
from simpler ones.”

But what are the DCBs related to? “Properties of space, time, entities, external
phenomena, and events” can be advanced to explain the dynamics of moving
objects. Among properties of time, cyclicity is the one we will be most interested
in. As for external phenomena, environmental influences may be advanced to
explain a particular behavior pattern of a given moving object.

3List adapted from [5].

53

4.3. Case-study: Antarctic Iceberg movement visualization

4.2.3 Visual techniques for movement, and data reduction

The authors of our article review the visualization techniques available to study
DCBs from IMBs and MCBs. For the case of IMBs, the space-time-cube (STC)
and animated displays are the two techniques available.

With the space-time cube, it is in effect possible to visualize space-time paths
to “estimate the positions, speeds, directions, and other movement characteris-
tics at different times” for IMBs. But the authors caution that the benefits of
this technique “fade away with an increase in the number of moving entities,
the length of the time period, or the geometric complexity of the trajectories.”
The number 10 is advanced as an already high number of trajectories to be
visualized in a space-time cube and this technique is therefore not to be recom-
mended for iceberg trajectory studies. We want to add that the STC cannot be
used to visualize any other type of dynamic phenomenon than trajectories and
that therefore it cannot be used to explain IMBs by connecting them to other
types of phenomena.

To visualize DCBs from MCBs, the use of the STC and a “movable plan” [38]
might be useful although the effectiveness of this new technique still needs to
make its proof. More commonly, small-multiples and map animation can be
used to visualize MCBs. The two latter techniques, as we said previously, can
well be combined.

Because modern datasets of moving objects often comprise large numbers of ob-
jects and long trajectories, data analysts regularly encounter the need to reduce
the number of items visualized on-screen. Andrienko and Andrienko identify
“aggregation, filtering and clustering” as potential approaches to effectuate this
data reduction. They review these approaches specifically for moving object
data. Reviewing these approaches is beyond the scope of the present research
on visualization.

4.3 Case-study: Antarctic Iceberg movement visual-
ization

4.3.1 Iceberg formation and fields of application

Icebergs are the result of the separation – or calving – of big masses of ice from
an ice-shelf. In Antarctica, the ice-shelf surmounts the Southern continent. The
ice, resulting mainly from snow compaction, flows in a “downhill manner” due
to gravity. Ice-tongs are the most important iceberg calving regions and are
located in specific areas. It is important to distinguish icebergs from sea-ice.
While icebergs come from the ice-shelf, sea-ice is merely frozen ocean water.
After their calving, icebergs travel mainly following ocean currents [9].

Several fields of application study iceberg. Glaciologists study icebergs to get
knowledge about ice dynamics and the relation between iceberg life-cycles to

54

Chapter 4. Moving objects visualization and iceberg use-case analysis

other phenomena. Climatologists are interested in iceberg numbers and life-
cycles as climate indicators (past, present and future). Oceanographers are
interested in icebergs because they reflect ocean dynamics and affect the bio-
sphere by shading areas where they get grounded. Navigation and petrol com-
panies need to be aware of iceberg positions and dynamics because of the threat
they represent for ships and mining-platforms. In addition, as the shortage of
drinking water is predicted to be the biggest challenge humanity will have to
face in the future, iceberg towing has been pointed out as one of the ways we
could provision ourselves with clear water. Finally, because of the wide range
of interests related to icebergs, because of the high level of importance iceberg
studies nowadays and because of the special equipment necessary to study ice-
bergs, multi-disciplinary scientific research teams exist to address issues rel-
evant to several application fields. We will call the members of such teams
emphiceberg specialists.

After presenting the iceberg dataset that we have available, we intend to intro-
duce a use-case that should further be analyzed to inform system design. From
an actor perspective, there are at least as many use-cases as there are fields of
application. The final system should address one or several of the requirements
set belonging to these different fields of application. After reviewing what vi-
sualization tasks can be solved by animated mapping, we will decide which of
these use-case(s) we will try and develop our visualization environment for.

4.3.2 The NIC Antarctic Iceberg dataset

Two institutes started recording Antarctic iceberg positions in the late 1970s,
the (American) National Ice Center (NIC) and the Brigham Young Univer-
sity (BUY). The data is made freely available by the NIC [49] and thus of-
fers more than 30 years of iceberg positions as well as other characteristics.
The data was recorded by the two institutions using a variety of remote sens-
ing platforms and sensors.4 Icebergs are detected by backscatter contrast and
systematically named. The NIC Web site provides images of each identified
iceberg (see for example [50]. Figure 4.2 shows for example (among others) ice-
berg ‘A-38’ and another iceberg at a time shortly preceding its calving from the
ice-shelf. Only very large icebergs can consistently be tracked and the dataset
therefore only contains icebergs whose sizes exceed the range of 10 nautical
miles (18.5 kilometers). We could have feared that such a dataset would not
be representative of the whole Antarctica iceberg population. However, Jansen
and colleagues [32] state that half of the ice calved off the Antarctic ice-shelf is
due to the most massive icebergs, i.e., with a “major axis greater than 28km.”
Therefore, we argue that the population of icebergs with a major axis of 18.5km
or larger can be assumed to be fairly representative of the whole population.

4Ballantines and Long [9] inform us that the NIC uses an infrared imager, a radiometer (Ad-
vanced Very High Resolution Radiometer (AVHRR), Synthetic Aperture Radar (Radarsat SAR)
but most of all, it uses scatterometer sensors (Operational Linescan System (OLS). The NIC also
“obtains iceberg positions provided by BYU who use SCP enhanced resolution images derived
from the SeaWinds scatterometer on board the satellite QuikSCAT.”

55

4.3. Case-study: Antarctic Iceberg movement visualization

Figure 4.2: Iceberg identification from satellite images (Source: [49])

Ross calvings area

Ronne calving area

Ross calvings area

Ronne calving area

Figure 4.3: Map of Antarctica showing the areas where major calving events occurred in
1999 and 2000 (adapted from [22].

56

Chapter 4. Moving objects visualization and iceberg use-case analysis

The icebergs with the largest major axis in the dataset is 172 km long and the
one with the biggest surface covers 9274 km2.

The dataset contains the following information: an arbitrary number identifier,
an iceberg ID, a time-stamp of the moment that particular tuple of informa-
tion was recorded, x-y positions in lat/long, the size of the iceberg (given both
in approximate short and long axes and in area) and finally the satellite that
recorded that particular iceberg instance.

The temporal aspects of the iceberg dataset that are most interesting for our
purpose are the longevity of the icebergs, the temporal resolution and the tem-
poral precision at which the data was recorded. The lives of icebergs commonly
last from a few years to 15 or even 20 years. The temporal resolution of the data
resulting from the NIC and BYU combined effort is variable. The laps between
two iceberg instances commonly goes from 1 or 2 days to 15 days, with regular
cases of up to 50 days. This temporal irregularity and the general low temporal
resolution might limit the results we can expect to get when exploring the ob-
jects’ dynamics. The temporal precision of the recordings is unfortunately low
as well. Only the day at which the icebergs were spotted are entered, no hours
or any more precise time measurements. We assume that it would be possible
for the data providers to enter more precise time-stamps and hope perhaps to
get such data at some point.5 The temporal irregularity and the generally low
temporal resolution as well as the low temporal precision of the data records
all impede the exploration of movement dynamics. For observing distributions,
this seems to be less problematic.

We want to give our special thanks to our colleague and friend Hoa Nguyen Thi
Phuong [57] for offering to share with us the work she did cleaning the dataset.
In effect, the original NIC dataset contained many duplicate recordings that
were not trivial to trace. Errors of other types were also removed.

The NIC dataset has been used in the past by researchers with various objec-
tives. Stephen and Long’s [74] studied the life-cycle of a single iceberg. Ballan-
tyne and Long [9] analyzed the increase in calving events happening from 1976
to 2001. They mainly try to determine the reasons behind the increase in ice-
berg numbers that occurred in the years preceding their study. They establish
that the biggest part of the increase can be explained by major calving events
that occurred “from the Ronne and Ross Ice Shelves” (see fig. 4.3 for map) but
that improvements in recording techniques is also responsible for part of the in-
crease. In their study, the authors also report on the movements of the icebergs
after the time they calve. It appears that the ocean currents around Antarctica
are fairly complex. Time constraints unfortunately do not allow us to review
documentation on this matter.

The dataset represents a unique source of information for many research fields
and need for more effective visualization techniques has been identified [75]. In

5We have attempted to contact the data providers at NIC but up to date, we have not received
an answer.

57

4.3. Case-study: Antarctic Iceberg movement visualization

the next section, we will review some of the challenges that research on icebergs
is facing and we will point-out those which animation could help to address.

4.3.3 Iceberg-visualization tasks using animation

We identify three approaches related to the dynamics of icebergs in which vi-
sualization techniques could be applied. While the two first approaches can
lead to the discovery of descriptive patterns, the last can lead to discovering
connectional patterns.

The first approach is related to the distribution of the population of icebergs
in space and its evolution through time. It is related to existential changes
(appearance and disappearance of icebergs) and to changes in collective distri-
bution. The second is related to the dynamics of icebergs, to ‘how they move’
in space (change in absolute position) and ‘how they move’ with regard to each
other (change in relative position). The third approach comprises attempts to
explain iceberg behavior by correlating it to external phenomena. It is split
into two topics: explaining calvings and disappearances, and explaining iceberg
movement.

While treating these three approaches, we will put in between ‘()’ requirement
with strange names which will help us in the next steps, analysis of these re-
quirements as well as system evaluation.

Evolution of iceberg distribution

Two iceberg behavior types influence the distribution of the population of ice-
bergs: the first is icebergs appearances and disappearances and the second is
iceberg movement. Iceberg appearances bear the name of calvings. Two dif-
ferent types of calving exist: calving from the ice-shelf - in our case the glacier
tongs of Antarctica and calving resulting from the split of an iceberg into two
or more separate entities. The ‘disappearance’ of an iceberg from the database
usually indicates that its size became too small for it to be tracked but disap-
pearance can also indicate that the iceberg was lost by the tracking team for
various reasons.

The difference between iceberg appearance and iceberg disappearance logically
affects the total number of icebergs present in the ocean. Climatologists are
interested in the evolution of the total number of icebergs as an indicator of
climate-warming. Animated mapping is less effective than other methods to
study the evolution of the overall number of icebergs. However, it can be useful
to study where and when the calvings and disappearances occur. However, in
a display cluttered with large numbers of moving icebergs represented, such
existential changes might not be easily noticed by the animated map reader.
It might therefore be useful to emphasize these existential change events (re-
quirement ‘exist’).

58

Chapter 4. Moving objects visualization and iceberg use-case analysis

Apart from studying the appearances and disappearances, animation can help
to visualize where and when one can find clusters of icebergs. Where and when
do we have high concentrations of icebergs (requirement ‘highConc’)? This ques-
tion is of particular interest for oceanographers and also for navigation compa-
nies. Are these clusters formed at regular times of the year from one year to the
next? Are there times of the year with high/low concentrations of icebergs and
where are these high/low concentrations localized (requirement ‘timesYear’)?
Furthermore, once clusters have been identified, one might want to study how
these clusters evolve in time (focus on the region) (requirement ‘evolTclust’)?
The evolution of the distribution of icebergs typically requires a momentary col-
lective behaviors (MCB) approach.

In addition, climatologists, navigation companies and iceberg specialists can be
interested in comparing the distributions of icebergs between two or several
years. This can be done in several ways. An obvious way would be to aggregate
the data for each year and provide summary representations of that aggregated
data. Another way involves a special animation technique that Slocum and
others [72] term brushing. The technique is said to “involve choosing a subset
of a time series,” for instance, the 21st of December of each year composing
the dataset (requirement ‘compareYears’). With animation applied to it, the
viewer can rapidly examine the trends, variations and regularities existing in
the successive years. In fact, this can be done in several two ways, choosing,
like in our example, to visualize only one day a year or by ‘summarizing’ the
data over a given period (e.g., one the month of December) for every year.

Motion dynamics of icebergs

Several fields of application can gain from increased knowledge about how ice-
bergs move. Questions such as the following may be asked on the trajectories
and movement of single icebergs:

• What is the complete trajectory of an iceberg during its ‘lifetime’? How
much does one iceberg travel during one year (absolute movement)?

• Are their trajectories regular or are they chaotic?

• What are the dynamics or variations in speed in the movement of an ice-
berg? (requirement ‘dynSingle’)

The two first questions do not necessitate animation to be answered; static
mapping would be well suited. For the third question, animation will be useful
although animated mapping is not the best method to assess speed of moving
objects.

Animation becomes useful to assess motion dynamics within space-time clus-
ters of icebergs. Once space-time clusters are identified, we can attempt to
answer the following questions:

59

4.3. Case-study: Antarctic Iceberg movement visualization

• Do all icebergs in a space-time cluster follow similar trajectories? Do
space-time clusters of icebergs split, seeing one group going one direction
and another group going another direction? (requirement ‘trajClust’)

• How do icebergs move with regards to each other (relative movement)?
Are their speeds similar or different? (requirement ‘relMvm’)

These questions might seem similar to those we posed when introducing dis-
tribution evolutions. However, the approach needed is quite different. While
in the previous section we were interested in overall distributions, here we are
interested in the dynamics of identified icebergs, whether they are alone in
space-time or whether they evolve in a group. The approach needed here is
that of individual movement behavior (IMB). Animation appears to be a poten-
tially useful visualization method to answer the second set of questions posed
here.

Two severe data limitation unfortunately apply for the visualization of motion
dynamics. As we mentioned earlier, the temporal precision of the recordings is
one day. This implies that some of the dynamics patterns that we might detect
may be the result of the imprecision of the temporal attribute of our data.

Exploring iceberg calvings and disappearances

The two categories of iceberg behavior identified, i.e., iceberg appearance/dis-
appearance and iceberg movement are both largely related to external phenom-
ena. What are the external phenomena that influence these behavior and what
patterns do these influences follow?

Various internal and external parameters play roles in the calving and disap-
pearance of icebergs. A wide range of factors have been identified in literature
to explain both the calving and reduction in size of icebergs. Grossly, the set of
factors advanced can be considered to be similar for both phenomena because
both calving and disappearance are the results of processes such as weakening,
melting and erosion of the ice. The set of factors advanced include the following
items [9, ?, 76]:

• Ocean currents

• Wind currents

• Iceberg to iceberg or iceberg to ice-shelf friction

• Basel friction

• Tidal currents

• Water salinity

• Water temperature

• Solar irradiation

• Air temperature

60

Chapter 4. Moving objects visualization and iceberg use-case analysis

Research is still ongoing to assess the weight of these factors on iceberg calv-
ing and size reduction. Our concern here is whether vector animations can be
of use to researchers to further model these weights. Raster-based animations
have been applied to illustrate processes such as of calving, iceberg-ice-shelf
friction or the effect of tidal currents. [51, 73] However, we believe that that,
as exploratory tools and not merely as illustrative tools, map animations are
essentially useful to visualize phenomena in which both the spatial and tem-
poral dimensions play an important role. To study the weight of the factors
listed above, we want to argue that animation alone is not an effective tech-
nique. In effect, most of these factors have a mild short term effect and it is
only through long time intervals that their effects can be measured. Since in
animation, change detection depends on human memory capacities, we argue
that this technique would not be effective. The analyst would therefore need
to remember the approximate values of the factor fields that individual or even
multiple icebergs traversed. Since this appears almost impossible, we propose
that instead of visualizing multiple icebergs in a spatio-temporal context, a dif-
ferent visualization technique or even a mathematical model should be applied.
As a visualization technique, we could propose that the attribute values of the
factors should be visualized through time for single icebergs or small groups
of icebergs (by using line-graphs or other appropriate visual techniques). The
cumulated effects of the factors could therefore be apprehended following a his-
torical approach.

However, if vector animation is not to be recommended to show the weight of
factors on calving or size reduction, it may still be of use to visualize the ap-
pearances, disappearances of icebergs in their spatial and temporal contexts
(requirements ‘contxCalvDiss’) as well as view the dynamism inherent to ice-
berg size variation (requirement ‘dynSize’). It may also be useful for researchers
attempting to identify icebergs whose calving, size reduction and disappearance
histories would be particularly worth studying.

Explaining iceberg movement by external phenomena

Veitch and Daley [76] say that “currents were found to be the most important
driving force for drift. Deep steady currents were found to be relatively impor-
tant for large icebergs and wind driven currents were relatively important for
smaller bergs.” Two other factors however play important roles in iceberg dy-
namics: the height of the ocean bed and the presence of sea-ice6. Icebergs tend
to get “grounded” when they enter in contact with the ocean bed and they get
stuck when the sea-ice is thick.

Ocean currents, wind currents, sea-ice and ocean-bed height thus are the main
factors which need to be taken in consideration to explain iceberg spatial dy-
namics. Of the four, the three first are dynamic phenomena and the last is
static. It would be interesting to visualize iceberg movement congruently with

6Sea-ice has a different origin than icebergs. While icebergs originate from the ice-shelf, sea-
ice is ocean water which froze in contact with cold air.

61

4.4. Analysis of Iceberg visualization use-case

all four or, alternatively with one or the other (requirement ‘moveRelPhen’).
IMB and MCB approaches could both be applied for iceberg motion, depending
on the explanatory phenomenon visualized.

4.4 Analysis of Iceberg visualization use-case

In the previous section, we presented a series of tasks and discussed whether
animation could be an effective means to go about them. Figure 4.4, schema-
tizes the system that we intend to design, the actors and related use-cases. As

Influence of
external conditions

on calving + size
reduction

Iceberg Visualization System

Evolution
of iceberg
numbers

Iceberg Specialist

Influence of
external phenomena

on movement
and distribution

Movement
dynamics of

icebergs

Evolution
of iceberg

distribution

Oceanographer

Glaciologist

Navigation

Climatologist

Figure 4.4: Use-cases for iceberg visualization involving actors from five different fields of ap-
plication

we have seen, the use of animation for iceberg visualization tasks can poten-
tially interest specialists from all the application fields we listed. We therefore
propose that our prototype will serve a variety of users from the fields of glaciol-
ogy, climatology, oceanography and navigation. In fact, we saw that multidisci-
plinary teams for iceberg studies already exist.

62

Chapter 4. Moving objects visualization and iceberg use-case analysis

The present section deals with the second workflow of UP, which is require-
ment analysis. Requirement analysis is to be accomplished by focusing on sys-
tem components destined to satisfy the requirements. The analysis is split into
five parts. We first present a series of requirements that are generic to all ani-
mated mapping tasks.7 Then appear four main visualization tasks and related
requirement analysis. These main tasks are split-up in the same way as the ice-
berg visualization tasks we just saw.8 The reader may have noticed that in the
previous sections, we wrote ‘(requirement ‘requName’)’ next to the tasks that
could be solved with the aid of animation. As we do not intend to process the
data in any complex manner for this research, tasks involving data aggregation
and summarizing are not treated below. We regrouped the ‘requirements’ seen
above according to the system functionality or component that we intend to use
to address them.

Summary of generic requirements for temporal animated mapping

1. Visualize objects: The objects need to be visualized.
→ Apply proper symbolization for icebergs, i.e., point symbol.

2. Orientation in space: The user needs to have some idea of distances
and directions that the icebergs are moving.
→ Provide a representation of the spatial context in which the objects evolve.
For the iceberg case-study, we will include a map of Antarctica and possibly
parallels and meridians.

3. Zooming: The user may want to zoom on a particular region.
→ Provide a zooming mechanism.

4. Specify time interval: The user needs to be able to choose the time
interval of the data he will visualize.
→ Provide a mechanism to specify the temporal extent of the animations.

5. Orientation in time: The user needs to be able to orient himself in time.
→ Provide temporal legends digital clock, time-bar and cyclic temporal
legend.

6. Speed control: The user needs to be able to control the rate-of-change of
the animations.
→ Provide a mechanism to control the temporal scale/speed of the anima-
tions.

7. Interact with temporal dimension: To explore the data and its inher-
ent dynamics, in addition to animation, the user needs to be able to control
the temporal dimension of the animations.

7This is a short version of the basic requirements that we presented for temporal animated
mapping in Chapter 2.

8For some visualization requirement analysis, we may repeat the presentation of items that
we already treat as basic requirements. We do this for the reader to see which tasks the basic
features assist.

63

4.4. Analysis of Iceberg visualization use-case

→ Provide simple temporal controls such as play, pause, stop; more specific
controls such as looping and an interactive time-slider.

8. Complement animations with small-multiples: As small-multiples
maps are good for comparing different states of the data, for sharing the
information and for remembering specific states, offering a possibility to
generate small-multiple maps in an animated mapping system is highly
recommended.
→ Provide a small-multiple generation functionality. The user should be
able to pause the animation on any state and easily generate a ‘snapshot’
of that state. This snapshot should conveniently be inserted in the series
of snapshots made by the user with information on the time-stamp and
without unnecessary GUI items.

Main task 1: Visualizing evolution of iceberg distribution

9. Requirement ‘existEmph’: emphasize existential changes such as calv-
ing and disappearance events.
→Make use of a temporally varying visual variable (such as color change)
or of a dynamic visualization variable (such as the frequency of blinking
applied to a point object) to emphasize the moments when icebergs appear
or disappear.

10. Requirement ‘highConc’: help viewer to know where and when high/low
concentrations of icebergs occur (distribution).
→ The ‘where’ problem is taken care of by the spatial representation. Since
we are interested in collective behavior and not really in individual trajec-
tories, the animations can be simple reflections of the point position data
in the database. The icebergs can remain represented by simple point sym-
bols, no need to view trajectories, no need for interpolation.

11. Requirement ‘evolClustT’: study evolution of clusters through time.
→ Animation can be applied and especially controlled with a time-slider
to visualize the evolution of the cluster shapes and positions.

12. Requirement ‘timeYear’: help the viewer to relate the images displayed
to times of the year.
→ The when problem calls for assistance from temporal legends. In partic-
ular, to relate the moments to times of the year, a cyclic temporal legend is
recommended. Digital clock and time-bar should be included as well.

13. Requirement ‘compareYears’: compare two or several years of data by
focusing on chosen moments of the year.
→ The request for an animation using the technique of temporal brushing
should specify the subset or periodicity of the data that should be rendered.
Animation and especially time-slider control can then be used to explore
the distributions.

64

Chapter 4. Moving objects visualization and iceberg use-case analysis

Main task 2: Visualizing Motion dynamics of icebergs

14. Requirements ‘dynSingle’, ‘trajClust’ and ‘relMove’: study trajectory
dynamics for individual icebergs and icebergs as parts of groups; study rel-
ative dynamics between icebergs (relative speeds, converging or diverging
paths).
→ All these requirements can be provided a solution for by two features
added to simple animation of the data: interpolation9 and dynamic path
mapping. Both have the same objective, reinforce the ability of the viewer
to see the movement as continuous instead of a map with points changing
positions.

Main task 3: Explaining iceberg calving/disappearance by external
phenomena

15. Requirements ‘contxCalvDiss’ and ‘dynSize’: view spatio-temporal
contexts of calvings and disappearances as well as the dynamics of their
size reduction.
→ Viewing calvings and disappearances is taken care of already above.
→ Visualizing the evolution of the sizes of icebergs can be achieved by mak-
ing use of a traditional cartographic visual variable changing through
time. Size seems like the most appropriate might be applied instead/as
well because they might be easier to visually grasp.

Main task 4: Explaining iceberg movement by external phenomena

16. Requirement ‘moveRelPhen’: visualizing iceberg movement in rela-
tion to four external phenomena (ocean currents, wind currents, sea-ice
and ocean bed height).
→ Provide appropriate dynamic or non dynamic representation of the ex-
planatory phenomena.

4.5 Summary

To conclude this chapter, we will shortly sum up what we have seen. We first
introduced a framework for visual analytics of moving objects. We then pre-
sented a case-study on Antarctic icebergs which we treat as a use-case for the
development of an animated mapping prototype specialized for iceberg move-
ment visualization. We identified a set of requirements from a visualization
point of view and further analyzed these from a system perspective.

The most useful and specific functionalities for an animated mapping system
are the following: For the user to orient himself in time, (a) temporal legends

9We will treat the problems related to the use of interpolation in the next chapter.

65

4.5. Summary

are necessary. Furthermore, for him to be able to navigate the temporal di-
mension, the most useful item is a (b) temporal slider. (c) A looping function
may also be of use. Several types of spatial animation were identified as use-
ful: (d) Simple animation of points reflecting the data are used to study the
evolution of the overall distribution (MCB-D). (e) Animations using temporal
brushing is applied to compare the distributions of the objects between different
years. (f) Interpolated animations with dynamic animation paths are used to
gain knowledge on the dynamics of individual icebergs and the relative dynam-
ics between two icebergs or two groups of icebergs. (g) In addition, animation
applied to traditional cartographic visual variables such as size can be used to
study the dynamics of non positional attributes of icebergs. Finally, to attract
the viewer’s attention on special events such as calvings or disappearances of
icebergs, (h) special use of dynamic visualization variables may be applied.

Despite a variety of animation types and differences in the additional visualiza-
tion features proposed, the resulting visualizations all follow the same simple
principle . . . The specified animations are loaded along with appropriate tem-
poral legends. The animations can be played or controlled using the temporal
slider. The orientation, control and animation requirements identified in the
present chapter will be used to inform the next step in our system development,
system design.

Important data limitations related to the temporal characteristics of the dataset
were identified. These limitations might limit the knowledge that can be one
gain from iceberg motion dynamics visualizations.

66

Chapter 5

Animated mapping
visualization system design

5.1 Introduction

The function of the present chapter is triple. Firstly, it offers solutions to our
main objective of combining the WMS Time Dimension framework with an ani-
matable vector graphics format for the internet. Secondly, it describes the user
interface and the functionalities of our visualization environment, which should
generate interactively controllable animated maps for the exploration of mov-
ing object data. Thirdly and as a consequence of the two prior, it will serve to
instruct the implementation steps of our prototype.

The proposed system should do three things. It should enable storage of the
data in a database, receive requests from a Web-client and give the appropriate
responses. The behavior of the system concerning request reception and re-
sponses should be as follows: (a) Firstly, the system should receive GetCapabi
lities requests and (b) return an XML GetCapabilities response to the
Web-client. Secondly, the system should (c) receive a GetMap request, (d) re-
trieve the data needed for the request (e) transform it into a graphical output
exhibiting the requested set of elements (objects, time-interval, animation type,
legend, interactive functions) in an appropriate format and finally (f) respond
this “map product” to the Web-client.

The structure of this chapter follows a top-down approach. We will first de-
scribe in detail the visualization possibilities that the system should offer the
user. Secondly, we will describe the behavior of the animations and interac-
tive functionalities. Thirdly, we will expose how the data should be stored and
how its temporal component can be converted for use in the vector graphics
animations. The fourth step is to examine the overall structure needed for our
system. We will present RIMapperWMS’ structure and show what elements
need to be added. Finally, we will examine the parameters that should compose
the GetCapabilities and GetMap requests.

67

5.2. Visualization options offered to the user

5.2 Visualization options offered to the user

Figure 5.1 shows a projected layout for our visual environment. It is composed
of two main areas. On the left stands the animated map display which includes
temporal legends and the time-slider. On the right hand side stands a general
graphical interface for the user to make visualization mode choices and to enter
parameters.

To produce his first (Get)map, the user is invited to make a series of choices.
These options are represented by the tick and text-prompt boxes and the tem-
poral scale slider of the ‘Visualization choices GUI’ (VCGUI) of figure 5.1. We
plan for the user to make his visualization choices as follows:

1. First, the user must choose (1) the visualization type. He has the choice
between a mode to visualize distributions (the MCB-D mode), a mode
to visualize motion dynamics (or IMBs) and a mode to compare succes-
sive years of data at particular dates (brushed animation method). If he
chooses to visualize MCB-Ds, he further needs to specify whether he also
desires to view existential (1.1a) and attribute (1.1b) changes.1 If the user
makes the second choice, destined to explore motion dynamics of indi-
vidual and groups of objects, the system will automatically show linearly
interpolated positions of objects. The user should still specify whether he
wants to view the motion tracks of the objects (1.2a – i.e., dynamic paths
following the entities), and, like for MCB-Ds, whether he wants to view ex-
istential (1.2b) and attribute (1.2c) changes in the data. If the user makes
the third choice, i.e., brushed animations, he further needs to specify the
periodicity (1.3a) of the animations and the recurrent date (1.3b) for each
period (e.g., does he want to view data of one chosen day of every year?).

2. The second group of choices relates to cyclic temporal legends (digital clock
and time-bar legends are made permanent items). When the user decides
to include a cyclic temporal legend (2.1), he further needs to specify which
version of cyclic legend he desires. (2.2), the span of the cycle (2.3 – year,
week, day, or irregular such as 1 month and 10 days, etc.) and the moment
of the beginning of the cycle that the cyclic legend should show (2.4).2 For
brushed animations, we consider cyclic temporal legends to be not very
useful and therefore plan to deactivate this choice.

3. The third item that needs specifying is the bounding box (3). What is the
spatial extent that the viewer wants to visualize. For iceberg visualiza-
tion, we propose to pre-fill the boxes with values covering the whole area
covered by the Antarctic Iceberg dataset.

4. The fourth set of choices the user must make relates to temporal param-
eters: first the temporal extent (4.1) and then the animation speed (4.2).

1for our case-study on icebergs, the existential changes correspond to calvings and disappear-
ances and the attribute changes correspond to changes in size of icebergs.

2More explanations on these features and choices follow.

68

Chapter 5. Animated mapping visualization system design

For the temporal extent, the beginning and end dates of the interval need
to be entered. For the animation’s speed or temporal scale, we hope to
offer the user control with a slider. This speed slider would control the
temporal scale of the animation. The value of the temporal scale would
show in a text box that we placed within the map display because it is
information and not a control in itself. Since temporal scales are not in-
tuitive values, we also offer the user a possibility to get an idea of what
it means by providing a text box showing the total display duration of the
animation (also in the map display area).

ANIMATED
MAP DISPLAY

Visualization Mode (1)

Temporal Parameters (4)

Distributions – MCB-Ds

Motion Dynamics – IMBs

Existential changes (1.1a)
Size changes (1.1b)

Motion tracks (1.2a)
Existential changes (1.2b)

Size changes (1.2c)

Display cyclic TLeg? (2.1)

Temporal extent (4.1):

begin date end date

Animation speed (4.2):

Anim. duration Temp. scale FastSlow

begin date end date
2008-06-28 12:25

Title of Visualization Mode

begin cycle
date

Year comparison – Brushed
Periodicity (1.3a):

Date in periods (1.3b):

P1Y

12-21

Cyclic Temporal legend (2)

Beginning of cycle (2.4):

Span of cycle (2.3):

date

e.g. year
Big Small (2.2)

-

Bounding Box (3)

-40 -85 -180 180

Figure 5.1: Projected user interface for animated mapping environment

Once all the necessary initial selections have been made, the GetMap request
can be sent and the visualization may begin. The user will further want to
change or refine his choices and he shall be able to do so by simply changing the
visualization options and parameters in the VCGUI.

5.3 Description of visualization functionalities

In this section, we describe the functions offered as visualization choices to the
user. This description includes graphical, animation and interactivity elements.

69

5.3. Description of visualization functionalities

It is split-up into three parts. First, we describe the components that we con-
sider to be generic for a vector-based animated mapping system. Secondly, the
components of functions specific to moving object animated visualization are
treated. The third set – very small – comprises those visualization elements
that are specific to iceberg visualization. They are in fact mainly instantiations
of generic functions described on more generic levels.

5.3.1 Generic functionalities for animated mapping

Temporal legends

The first set of generic functionalities that we treat is the temporal legends
and we start with the time-bar. As can be seen in figure 5.1, we follow Har-
rower’s [30] design of time-bar legend (seen on p.23). We consider the present
vehicle-sign to be part of the time-bar because even without interactivity, it
may be useful to have an attention attracting symbol representing the present
of the animation. The dynamics of the time-bar are as follows: While at the
beginning of the animation, the rectangle representing the past has no width,
it progressively grows and covers the ‘future’ rectangle. The present vehicle-
sign moves from left to right of the time-bar at the same speed. In addition to
these graphics, time-stamp strings corresponding to the real-world moments of
the beginning and end (‘begin date’ and ‘end date’ in figure 5.1 of the temporal
extent should figure at the beginning and end of the time-bar.

The digital clock shall be placed under and in the middle of the time-bar. It shall
show the real-world time of the animation in a dynamic way. The precision
chosen for the time shall be meaningful. It might not be necessary to view
seconds if we are visualizing a temporal extent of months or years.

MAP DISPLAY

MAP DISPLAY

begin cycle
date

begin
cycle
dateMAP DISPLAY

a) b)

c) d)

MAP DISPLAY

Figure 5.2: Four types of cyclic legends: a) the small pie-portion, b) the big pie-portion, c) the
small hand type and d) the big hand type.

We propose four different graphical designs of cyclic temporal legend. This
number might seem large but the coming considerations will justify it. These
legends can be described according to two variables: their size and whether

70

Chapter 5. Animated mapping visualization system design

they possess changing pie-portions or not. We start by describing those with
pie-portions and then those without.

The first is as shown in figure 5.2a. It is a disc with a growing pie portion
representing the past.The second, (fig. b), follows the same design but is much
larger and surrounds the map display. It is based on the idea that very large
cyclic legends may favor subconscious orientation within the cycle. The design
of these two cyclic temporal legend (growing pie-portions) is, as far as we know,
original. It is derived from that of the time-bar. At first, we were thinking of
making the past and future portions of the circle the same colors as the time bar
past and future areas. However, one cycle may not correspond to the temporal
extent of the loaded animation and thus of the time-bar. To avoid confusing the
viewer, we therefore decide to use different colors.

Because using two different color schemes for the bar and cyclic legends may
overload the user of reference systems, we thought of an alternate, simplified,
design. Removing the pie-charts, we only keep a “rotating hand”. These simpli-
fied legends, both of small and large types can be seen in figure 5.2c and 5.2d.
A definite advantage of the small cyclic legend with only a hand (type c) is that
it can be proposed without any background, which makes it less cumbersome
in the map-display.

The pie-portion cyclic legends offer an advantage over simple hand legends. The
user can decide at what time of the real-world time cycle the visualization cycles
should start. For instance, in iceberg studies, a specialist might be interested in
viewing seasons from what he considers their start to what he considers their
ends. If for example, the iceberg calving season starts in December, he may
want to start his cycles at that time or a little earlier. Having cycles start at
another time would require him to do some unnecessary thinking. In legends a
and b of our figure, the angle is of 90 degrees, which corresponds approximately
to the 5th of November in a yearly cyclic legend.

It should be made clear that the hand rotates at identical speeds for both types
of legends. It is only the moment of the cycle (e.g.,year) when the pie-portions
start and end growing that can be set.

Time-slider

We have already abundantly discussed the time-slider. Its principle and advan-
tages were treated in section 2.8.3. Its action is extremely simple. It must set
the moment of the animation to the place the user drags the slider to. The inter-
active control function of the time-slider is combined to the time-bar temporal
legend. In this sense, no additional graphics are added. The present vehicle-
sign can be considered to be part of both the time-bar and the time-slider.

71

5.3. Description of visualization functionalities

Temporal extent

To specify the temporal extent, the user must enter dates for the beginning and
the end of the real-world time span he desires to visualize. It was mentioned
that we could limit the user’s choices of temporal extents both to make his choice
easier and to simplify other settings (cyclic temporal scale). However, we defend
that it is useful to offer the explorer with the freedom in his choice of the time
extent. The reason is that he may be interested in the life of a particular iceberg
or of a group of icebergs (e.g., all the icebergs that calved during a major calving
event). Animations corresponding to the visualization choices made should be
loaded for this time span.

Temporal scale/speed

For the design of our function destined to control the speed or the temporal scale
of our animations, we propose to center our design on temporal scales and not
speed or animation durations. Dealing with temporal scales instead of speeds
has the big advantage, as explained earlier (see p.28), of being objective. Pro-
vided that an absolute zero of time is chosen, the animations loaded could very
well have time-stamps corresponding to real-world times. These time-stamps
can then be multiplied by the temporal scale to become time stamps in display
time. We propose to control the temporal scale via a ‘Tscale-slider’. Ideally,
we would like to enable the user to change the speed of the animations without
reloading the animations. Controlling the temporal scale as we propose, instead
of controlling the durations of animations seems to be a good way of achieving
this. In addition, it also offers the advantage of not needing to recalculate all
the individual animation durations.

As announced, to deal with the fact that temporal scale values are not intu-
itive, we propose two solutions that we shall both adopt. First, the Tscale-slider
should not have Tscales as indicative values but just the adjectives ‘slow’ and
‘fast’. Secondly, to inform the user on what a temporal scale value corresponds
to in his visualization experience, an information box tells the user in what
display-duration the real-world time interval will be viewed.

5.3.2 Moving object specific functionalities

The following paragraphs are on visualization functions specific to moving ob-
ject data. The elements treated could be grouped in four design categories:
(1) the functions of the general GUI for the moving object visualization plat-
form, (2) the graphical representations of objects, (3) animation types and (4) ad-
ditional animated visualization elements (e.g., dynamic attributes, showing
real/interpolated states, . . .).

72

Chapter 5. Animated mapping visualization system design

GUI for visualization choices

As shown in figure 5.1, the ‘Visualization choices GUI’ contains check-boxes
that the user can click, prompt text-boxes that the user can fill and a speed-
slider to manipulate. The most fundamental choices (visualization types, tem-
poral extent and bounding-box) should set the parameters of the GetMap re-
quest. Once sent, this request triggers high-level programs which serialize the
data and the graphical user interface elements. The less fundamental choices
trigger interactive functions client-side, some of which may have powerful visu-
alization effects.

Graphical representation of objects

Logically, for visualizing moving objects data, the main symbol needed is one
representing the objects themselves. Typically, point objects are represented by
symbols such as discs, squares, triangles or any other more meaningful shape.
Size, color, stroke of objects can be chosen for visualization or meaning-related
purposes.

Animations to show the distribution of objects – MCB-D

As we saw, three main animation visualization types were proposed: plain an-
imation of the data, brushed animations and animations showing the motion
dynamics. We will start by presenting the functions underlying the first.

We assume the data used for our visualizations is in the following format: for
each recorded position of the objects, a tupple is stored showing x-y positions
and a t temporal value. For plain animations of the data, meant to show the
distributions of objects, we adopt the MCB-D visualization mode explained pre-
viously. The objects are displayed in a given each position from the date of
the time-stamp corresponding to that position until the date of the following
time-stamp (and thus the following position).

Animations for motion dynamics visualization – IMBs

To visualize motion dynamics, we propose to integrate two design elements. The
first is to interpolate the positions of the objects in space-time. When the ani-
mations are run, the objects are shown in successive positions, some of which
correspond to real data (space-time) positions and some are the result of inter-
polation. The second is to show the dynamic tracks of the objects. The objects
appear to be followed by their tracks.

Because we interpolate positions, the user needs to be informed that not all
positions correspond to true records of object positions. We propose to inform
the user about this in the two following manner: As the object passes real data

73

5.3. Description of visualization functionalities

positions, these positions are marked by a dot. These discrete dots – in the same
color as the dynamic tracks – remain visible after the passage of the object.

Comparing distributions at regular time periods - Brushed animations

The principle of brushed animations has already been explained. While in the
above type of animation, all the data positions are loaded, in this type of anima-
tion only a subset of the positions is taken. The subset is defined (in addition to
the temporal extent), by the periodicity and by the repetitive date in each period
that should be visualized. For instance, the repetitive date of the 5th of Febru-
ary (Middle of the summer in Southern hemisphere) of each year (periodicity)
should be loaded for a time extent going from 1976 to 2008.

Showing attribute changes

As we saw, moving object spatio-temporal data may also contain attributes de-
scribing evolving qualities of the objects. In the iceberg case for example, their
size-changes are recorded. We propose to animate appropriate traditional car-
tographic visual variable to represent these changes. If for example, an object
goes through critical phases in which it is safe, threatened or in serious danger,
the visual variable hue may be animated from green to red through yellow. The
changes may be discrete or continuous.

Emphasizing existential changes

A frequent type of change observed in moving object data is existential change.
As seen for icebergs, objects may appear or disappear. We propose to attract
the user’s attention on these happenings using dynamic visualization variables.
We are thinking in particular of applying the dynamic visualization variable
frequency and to blink the symbol representing the object off and on. Doing
so, we should be aware that the uniformity of the temporal scale is interfered
with. However, such changes might disturb the visualization if the viewer is
interested in other aspects of the phenomenon. This underlines the importance
of offering the possibility to switch such emphasis functions off.3

5.3.3 Iceberg specific visualization components

Two types of iceberg-specific visualization choices need to be made. The first set
is derived from the more generic functions that we have seen above. In addition,
as it would be more meaningful to visualize the icebergs in their contexts, we
intend to integrate elements of their environments in our visualizations.

3If these effects are disturbing even when the user is trying to visualize the events they rep-
resent, animating visual variables would also be an option.

74

Chapter 5. Animated mapping visualization system design

Visualization choices for icebergs

We said that a symbol needs to be chosen to represent the objects visualized.
We propose to use colored discs to represent icebergs. These discs may or may
not have strokes. The second choice which needs to be made relates to which
visual variable to animate to represent changing iceberg sizes. We propose to
animate the variable size. This might be done in a discrete way, classifying
the sizes or in a continuous way, with or without interpolation. We propose for
the choices specific to iceberg visualization not to be offered to the user as this
would require our prototype to be a complete mapping application. To simplify
our task, we propose that these design variables be directly entered into the
system.

Visualizing iceberg environment

Most cartographic visualizations need an appropriate context. We established
earlier that for the visualization of iceberg phenomena, we should include a
map of Antarctica, parallels and meridians. We propose to adopt an azimuthal
projection of the region centered on the continent.

In addition, it may be of interest to visualize the dynamics inherent to our data
in relation with other dynamic phenomena such as ocean currents, wind cur-
rents and the presence of sea-ice as well as with constant environmental qual-
ities such as ocean-bed heights. We hope to find time-series data to represent
the three dynamic phenomena and a map of bathymetric heights. If we didn’t
find time-series data for them, if its quality is not sufficient or if data on these
dynamic phenomena were too difficult to animate, we hope that static represen-
tations of some of the dynamic phenomena (ocean and wind currents – if they
are sufficiently regular throughout the year) and temporal general knowledge
on the presence of sea-ice (according to seasons) might be useful fall-backs.

5.4 How should the data be stored, converted and re-
trieved?

5.4.1 Storage of spatio-temporal data

‘How should the spatio-temporal data be stored?’, ‘How should it be converted
for use within the client-side animated graphics format?’ and ‘How should the
system respond to a temporal request or in other terms, for a specified tem-
poral extent, which spatio-temporal data objects should be retrieved from the
database?’ are the main questions we will offer solutions to here. Because the
result of the time-stamps conversions will affect the way we store the data, we
will start by treating the conversions steps. In addition, as we just saw, we
intend to congruently visualize additional data. How should this data be com-

75

5.4. How should the data be stored, converted and retrieved?

bined with the iceberg data? Would it be possible to use another WMS engine
in order to demonstrate the interoperability of our system?

5.4.2 Steps to convert the time component of the data

Both client-side vector graphics format that we studied (i.e., Flash and SVG)
have an internal clock running in which display-time elapses. All changes
happening in the animations happen in this display-time. Typically, seconds is
the main time unit used and the animations start at time 0 seconds. On the
data side, we have real-world time-stamps. In addition, these time-stamps are
in the ISO 8601 extended format which means that they are in the form of a
single string including different time units (e.g., 2009-01-12T14:50:58Z). In the
iceberg case, these time units include years, months and days. A conversion is
necessary to go from ISO 8601 to a time format that can be integrated in the
animations referring to seconds.

The conversion we propose is composed of the following three steps. These are
illustrated in figure 5.4).

1. Convert time stamps to a single unit: Convert the multi-unit time
stamps (years, months, days, . . .) to single unit time stamps. Typically,
for modern times, this is done by calculating what the multi-string time
stamp corresponds to in seconds from the arbitrary date 1/1/1900.

2. Subtract the start-time value: Since the client-side animations start
with time 0 seconds, the next step is: for a given time extent, subtract the
value of the starting time from all time stamps. The new time stamps are
now in seconds from 1/1/1900 reduced by the start time.

3. Multiply by temporal scale: Finally, we multiply the new time stamps
by the temporal scale. The temporal scale is chosen by the user in function
of the ‘speed’ at which he desires to vision the animations.4

Only the two last steps depend on the visualization choices made by the user.
They depend on the temporal extent of the animation and on the temporal scale
chosen.

The first step does not need to be done at runtime and we thus propose to store
the time in two formats in the database, i.e., one in ISO 8601 extended format
and one in in seconds from 1/1/1900.

The database schema for storing moving object spatio-temporal data should
follow OGC’s specifications. For spatial attributes, the x and y coordinates of
an object’s position should be stored following OGC’s simple feature geometry
of type point. For the temporal attribute, the ISO 8601 standard should be

4As we saw in chapter 3, more complex time conversions may be useful to use more elaborate
time manipulation functions in SVG.

76

Chapter 5. Animated mapping visualization system design

Table name ->

Attribute name -> SrNr ID TIME_ISO TIME_SECs1900 GEOM AREA_KM2

Data type -> integer string string integer wkt integer

First tupple example -> 1 A01 1986-10-08 308457609 POINT(-56,-34.2) 3859
2 A01 1986-10-15 308492932 POINT(-55,-32.3) 3859
3 A01 1986-10-17 308528255 POINT(-53.7,-35) 3087
4 A01 1986-10-20 308563578 POINT(-53.7,-35) 3087
5 A01 1986-10-25 308598901 POINT(-53.4,-34.4) 3087
6 A01 1986-10-29 308634224 POINT(-53.9,-33.8) 2401
7 A01 1986-10-30 308669547 POINT(-53.3,-33) 2401
8 A01 1986-11-08 308704870 POINT(-53.3,-32.8) 2401
9 A01 1986-10-11 308740193 POINT(-51.7,-31.6) 823

Icebergs

Figure 5.3: OGC-compliant database schema for spatio-temporal point object data.

2008-12-01 2009-01-08 2009-03-06

Real-world time stamps in
seconds since 01/01/1900

1. Convert using
algorithm

3437251200 3440534400 3445459200

Temporal Extent to visualize

2008-11-06 2009-03-22

Still real-world time extent
and stamps in seconds but
with start-time = 0

26.5
13.9

5.5

Display-time time stamps in
seconds with start-time = 0

2. Subtract
start-time

0 sec 30 sec

3. Multiply by
temporal scale

3435091200 3446841600

2160000 5443200 103680000 11750400

T scale = 2.55*10⁻⁶
(T-extent of 136 days in a 30 seconds animation)

Real-world multi-unit time
stamps in ISO 8601 format

Figure 5.4: Time conversion steps from ISO 8601 to animation display-time seconds

77

5.4. How should the data be stored, converted and retrieved?

adopted. Figure 5.3 shows what the ‘Icebergs’ table of our database could look
like.

The second attribute (ID) holds the name given to each iceberg by NIC. The
second holds the time-stamps in the ISO 8601 format. The third attribute is a
conversion of the latter into seconds since 1/1/1900. The fourth attribute follows
OGC’s simple feature geometry for point objects.

To populate the database with the Antarctic Iceberg dataset, we will first have
to convert the values of the x, y and time attributes to this specification.

5.4.3 The need for a temporal intersect

Real-world
time line

Temporal extent
to visualize

2008-11-06 2009-03-22

1 5 876432

fig. a

Object time
stamp 1

2

PAPA

Simple data animation
Obj

2

3

4

5

76

1

fig. c

2

PA

3

4

5

fig. e

fig. b

fig. d

2

3
Obj

PA

Only spatial trajectory

Interpolated animationInterpolated animation

= Start & End of visualizations PA = Present of Animation

Figure 5.5: The need for a temporal intersect. In b, c, d and e, the blue points mapped (with
numbered labels) show real data positions whereas the ‘Obj’ labels show object positions at
the present of the animation.6 The green and red stars respectively represent the start and
end of the animation.

Map Server engines providing non temporal information apply a spatial-intersect
between the bounding box requested by the user and the spatial distribution of
the objects. Similarly, to parse a temporal request, our Map Server needs to
apply a temporal intersect to the data.

Figure 5.5 illustrates the need for a temporal intersect. The beginnings of the
animations, at display time 0 should also show states reflecting data positions

78

Chapter 5. Animated mapping visualization system design

that are not within the time interval specified. In a), a real-world timeline is
shown with the time stamps of one single object. Lines delimitating the tem-
poral extent show the period that shall be visualized. Time stamps 3, 4, 5 and
6 are within the temporal extent. Figure b shows the trajectory of our object
mapped without consideration for the temporal dimension (except for order).
Figure c represents a stepwise animation of the data at start time. It attempts
to show that the user needs to view the position of the object before the time
of its first time-stamp within the temporal extent. In effect, although time-
stamp 2 is not within the temporal extent, the object is shown in that position
at the beginning of the animation. Otherwise, the user may think that the ob-
ject did not come into existence before time-stamp 3. This also applies for

ID TIME_ISO TIME_SECs1900 GEOM

A01 1986-10-08 2738275200 POINT(-56,-34.2)

A01 1986-10-15 2738880000 POINT(-55,-32.3)

A01 1986-10-17 2739052800 POINT(-53.7,-35)

A01 1986-10-20 2739312000 POINT(-53.7,-35)

A01 1986-10-25 2739744000 POINT(-53.4,-34.4)

A01 1986-10-29 2740089600 POINT(-53.9,-33.8)

A01 1986-10-30 2740176000 POINT(-53.3,-33)

A01 1986-11-08 2740953600 POINT(-53.3,-32.8)

A01 1986-11-11 2741212800 POINT(-51.7,-31.6)

Te
m

po
ra

l e
xt

en
t

to
 v

is
ua

liz
e

Figure 5.6: Applying a temporal intersect to spatio-temporal data

interpolated paths. In figure 5.5d, shortly after the beginning of the anima-
tion, the object is situated in an interpolated position between data-stamps 2
and 3 and its path has been interpolated and animated for all positions start-
ing from the calculated position that the object is likely to have had at a time
corresponding to the beginning of the animation.

The way a temporal intersect is implemented is similar to that of the spatial
intersect. For each object existing during the time-extent, its time instance im-
mediately preceding the time-extent and its time instance coming immediately
after the time-extent should be retrieved (that is, if the object didn’t start or end
its existence during the time-extent). This principle is illustrated in figure 5.6.
The orange dashed box shows the temporally selected data that we would use
to build an animation for a chosen time extent (here from the 16th of October
to the 3rd of November 1986).

Coming back to figure 5.5, frame e shows that although time-stamps 5 and 6 are
within the temporal extent, the position of the object at those moments might
not be within the spatial extent. In conclusion, to depict the positions of the
objects for the requested bounding box and the requested temporal extent, both
a spatial and a temporal intersect need to be applied. Although slightly compli-
cated to realize, this shall have a positive impact on the size of the animation
files loaded and thus on the memory load put upon the client.

79

5.5. High level system structure

Applying the time conversion steps presented in the previous subsection, real-
world time stamps occurring before the beginning of the visualized time-extent
shall receive negative values. The graphics animation engine should recognize
these negative values and show appropriate positions (non interpolated as well
as interpolated). The showing of states reflecting time-stamps occurring after
the temporal extent can simply be prevented by a mechanism making the ani-
mation stop once the time extent has elapsed.

5.4.4 Integration of additional georeferenced products

As previously introduced, we intend to visualize the icebergs within elements of
their geographical context. A map of Antarctica with parallels and meridians as
well as bathymetric heights were proposed as static data. Ocean currents, wind
currents and the evolution of sea-ice was proposed as additional time-series
data.

To demonstrate the interoperability of our system, we hope to integrate WMS
layers from another map server. However, the state of the zoom and pan func-
tions of the present RIMapper does not trigger dynamic requests to external
map servers. We hope that this feature will be implemented on time for the
integration to be possible.

5.5 High level system structure

In this section, we will first present the conceptual structure of our system.
The next step will be to study the structure of the existing RIMapperWMS and

GetMap

Graphics

Interactive Function

Animation

Interactive Function

Map server

Figure 5.7: Three-tier architecture: Web-client-map server-database

assess its suitability for our purpose. In these steps, our system design will stop
being generic and usable for implementation for any vector graphics output

80

Chapter 5. Animated mapping visualization system design

format. Finally, we will present the ways in which RIMapperWMS needs to be
transformed to deliver interactive animated maps from a database backend.

5.5.1 Conceptual representation of the system

Figure 5.7 offers a representation of the system and its components. It follows
the common ‘three-tire’ architecture: database-processing capabilities- client.
The Web client, in our case, shall be a simple Web browser capable of rendering
the vector graphics animation format that we intend to implement as well as
related interactive functions.

The map server is composed of three parts. The first part is triggered by the
client’s request. It parses the request and activates the appropriate mecha-
nisms to render an interactive animated map product. The central component,
that we call the serializer7, once activated, retrieves the necessary information
from the database and puts it together. For SVG interactive animated maps,
the products resulting from this serializing are of two types: SVG graphics and
animation on one side and interactive functions in ECMA-Script on the other.
The final result, however, should be one single output (nested) file that can be
rendered by the client. The third component is a querying engine triggered
by the serializer which communicates with the database. It is responsible for
translating the request into simple query language (SQL).

The database component is split into two parts. On one hand the actual data
(for our prototype, iceberg data) and on the other, scripts related to the graphi-
cal user interface, the animations and the interactive functions. Although from
a geographic point of view the latter group are not data, from a system design
perspective, they are.

5.5.2 RIMapperWMS’ present structure

Köbben [34] explains that the existing version of RIMapperWMS is made of
three components:

• “A spatial database backend is used for storing both the configuration of
the Web Map Services as well as the actual spatial and attribute data (. . .)

• A set of Java servlets and classes that respond to WMS compliant requests
(. . .) by providing maps in SVG, with a built in GUI (. . .)”

• A “Web-client capable of rendering SVG to view and interact with the
maps.”

We represent this structure in more detail in figure 5.8. It is a three-tier archi-
tecture composed of Web client, middle-ware and database backend. To avoid

7Serializing is the term used in software development to describe the action of an engine that
composes information from a database into an output of another type.

81

5.5. High level system structure

Figure 5.8: The structure of the present implementation of RIMapper (white boxes) and the
proposed extensions (light grey boxes).

82

Chapter 5. Animated mapping visualization system design

redundancy, the elements that we intend to add to the setup for interactive an-
imated maps generation have also been included in the setup and appear in
orange. We are now going to review the components of the present setup and
their actions.

The data stored in the database backend follows OGC’s simple feature recom-
mendation. In addition, the graphics of the GUI as well as pieces of script for
interactivity are also stored in the same database. The interactive functions
presently available are zooming and panning, a layer switcher and mouseover
attribute information retrieval. The middle-ware responds to client requests by
activating the serializer. The serializer composes SVG interactive maps includ-
ing a built-in GUI from the three types of ‘data’ in the database. Finally, the
web-client is an SVG capable Web-browser

This basic structure seems to be well suited to be extended for our purpose. No
changes to the structure seem necessary to store additional time components
in the database, add temporal legends to the graphics, animate the graphical
objects and add new interactive functions for animation control.

The behavior of the system concerning map server-client and map server-database
communication are similar to what we described above. We therefore decide to
build on the existing system by extending its capabilities for animations and
their control.

5.5.3 Extending the structure: the birth of TimeMapperWMS

As announced, figure 5.8 contains the extensions that we need to make to the
existing implementation of RIMapperWMS. Extensions need to be made to all
components of the system. The reader is invited to follow these changes on the
mentioned figure as we describe them.

Extensions to the database tier

On the database side, the database schema needs to be extended, in the way
explained earlier to store a temporal information in the ISO 8601 extended
format.

The graphics description of the GUI, as well for user choices as for interact-
ing with the temporal dimension must be stored. A new component needs to be
added to the scripts classes. Not all types of animations that we desire to render
can be implemented fully using SVG’s SMIL animation engine. In effect, the
implementation of a cyclic temporal legend and of interpolated animated ob-
jects’ tracks need scripting. In addition, the interactive functions library needs
to be extended to include the behavior of: the time-slider and the visualization
choices offered to the user8.

8As described in the section on the user interface, this includes, among others, speed/temporal
scale control.

83

5.6. The actual GetCapabilities and GetMaps: requests and responses

Extensions to the middle-ware

Two sets of extensions are necessary regarding the middle-ware’s serializer.
While the present implementation serializes the geographic and GUI data into
vector maps with built-in GUIs, the new setup shall be extended to serialize an-
imated maps from spatio-temporal data and include appropriate GUI graphics.
The second extension concerning the serializer comes from the necessity to gen-
erate a fairly large series of new interactive functions. Among these functions,
the simplest are related to the user’s choices and the most complex are related
to the control of the animations’ speed and temporal moment (time-slider).

Extended capacities of Web client

While for static vector maps, the Web client only needed to be capable of ren-
dering static SVG, clients to be used for the new implementation need to be
capable of rendering SVG SMIL animations9. Unfortunately, not all browsers
have this capacity without a plug-in. . .

5.6 The actual GetCapabilities and GetMaps: requests
and responses

GetCapabilities response

The first step of a user planning to use a WMS engine is to post a GetCapabili-
ties request. Our system should respond to this request with a GetCapabilities
XML document. This document should provide appropriate information on the
data and on the service that the system can provide. In addition to the common
parameters such as the Bounding Box, the Coordinate Reference System and
the Layers, since our service provides different time-states of the same objects,
it shall have a TIME parameter. The modalities of this parameter were reviewed
in section 3.2.2.

Our service generates SVG format animations with built-in graphical user in-
terfaces. As explained in Köbben’s [34] article on RIMapperWMS, a user may
or may not want to retrieve the GUI, depending if he wants to overlay the map
product with other WMS products. The user should be informed of the possibil-
ity of getting the additional GUI or not. For this purpose, a parameter of type
’boolean’ should be included. The name of this parameter is getGUI. Additional
information on the visualization modalities and on the types of GUIs proposed
should be provided within <documentation> parameters.

9The browsers with such capabilities are Opera, Safari and Internet Explorer with a plug-in.

84

Chapter 5. Animated mapping visualization system design

GetMap request for distributions and motion dynamics

Using SVG and client-side interactivity, we hope that two types of GetMap re-
quests will be enough for all visualization functions. A first type of request can
be used for distribution as well as for motion dynamics visualizations. A second
type of request should be used to visualize brushed distributions.

The difference between an interpolated animation and a step-wise animation
of the same data are very similar in SVG – thanks to the power of SMIL. The
request shall contain the following parameters:

• VERSION=1.1.0

• REQUEST=GetMap

• LAYERS=icebergs

• CRS=3031

• BBOX=3000000,-3000000,3000000,3000000

• WIDTH=500

• HEIGHT=500

• TIME=1986-01-01/2006-12-31

• FORMAT=image/svg+xml

• getGUI=true

This request should retrieve an SVG animation of the iceberg layer with start-
time 01.01.1986 and end-time 31.12.2006 for the whole Antarctic region. The
last parameter is vendor specific [34]. It specifies that an additional GUI should
be retrieved.

We hope to be able to design interactive functions enabling all the visualization
features to be rendered on the client-side. We predict that the least simple of
these mechanisms to provide may be a way of setting the temporal scale.

GetMap request for brushed distributions

For brushed distributions, the GetMap request should be quite similar to the
one above. The only parameter that needs to be different is the TIME specifier.
Instead of a simple interval, an interval and an additional periodicity parame-
ter should compose this element.10 Here is an example:

TIME=1986-01-01/2006-12-31/P1Y

10WMS intervals and periodicity are explained in section 3.2.2

85

5.7. Summary

With all other parameters identical to the previous request, this should retrieve
a brushed animation of the icebergs’ instances (existing at that day) whose
time-stamps are closest to the first of January of each year.

5.7 Summary

In the present chapter, we described how we envisage our system, its user in-
terface, its functionalities, its way of storing spatio-temporal data, its overall
structure and the communication between client and Map Server. In addition,
we proposed steps for converting the temporal dimension of the data from the
format recommended by OGC to a format that can be integrated in Web-based
animatable vector graphics formats. In the next chapter, we will present how
we went about the implementation of the system and its various components.

86

Chapter 6

TimeMapperWMS prototype
implementation

6.1 Introduction

The approach followed to implement the system was four-fold. First, we had to
follow OGC’s recommendations for storing time-stamps in the database. With
this in mind, we assured ourselves that there was a way to convert these stamps
into a format that could be rendered by our animation engine. The second step
was to produce the desired animated and interactive behavior without our ob-
jects being the reflection of the true data. The third step was to implement
high-level programs that would generate the desired animations and interac-
tive functions from the data in the database. Finally, the fourth step was to
make our system respond to WMS GetCapabilities and GetMap requests.

In the present chapter, for better clarity, we deviate slightly from the sequence
of these steps. As seen previously, one of the functions we intended to develop
was a mechanism for the user to set the temporal scale. Our desire to make
this speed-control accessible to the user without reloading the animations chal-
lenged us to develop a fairly complex mechanism. It is easier for one to under-
stand how this mechanism works after one has seen how animations are built
and how variables are stored on the client side.

6.2 Populating the database

For the data to be available, it first needed to be entered into the PostgreSQL
database that the original RIMapperWMS makes use of. This was done fol-
lowing the indications provided in our design chapter. An additional attribute
containing time in ‘seconds since 1/1/1900’ was added to the original dataset.
To take a load of the system at run time, the data was stored in two different
projections. The first is the lat/long positions of the original dataset and the
second is a stereographic projection commonly used for Antarctica.

87

6.3. Client-side visualization functionalities

6.3 Client-side visualization functionalities

This section is about how the different client-side functionalities were imple-
mented. First, we report on how the different types of object animations were
built. Second, we explain the development of the different temporal legends.
Third, we present the mechanisms found to control the temporal dimension of
the animations. Finally, we explain how we offer the user control over the dif-
ferent visualization functionalities.

6.3.1 Building animation behavior

Before scripting the animations, the first step to visualize the icebergs was to
symbolize them (Vis-IBspec:Discs). We used the SVG <circle> element
for that. As projected in the previous chapter, several types of animations are
developed to visualize the iceberg data: simple stepwise animation of the data,
interpolated animations, interpolated and animated tracks and animation of
the iceberg-area attribute. The reader shall not be surprised that most of our
animations don’t have any values for the ’begin’ and ’dur’ attributes. The reason
is that these values will be set dynamically after the user sets the speed at
which he wants to view the animations. . .

Stepwise and interpolated animations

Building simple stepwise animations (for MCB-Ds), interpolated animations
(for IMBs) was achieved very simply using the SVG SMIL animate element.
The script below shows a circle element with two of the latter.

<g id="IB_animation" style="fill:lightblue; stroke:red;
stroke-width:4">
<circle id="IB_A35B" cx="0" cy="600" r="25">

<animate id="XanimIB_A35B_0" attributeName="cx"
begin="0s" from="0" to="200" dur="2s"
calcMode="discrete" repeatCount="none"
fill="freeze" />

<animate id="YanimIB_A35B_0" attributeName="cy"
begin="0s" from="600" to="550" dur="2s"
calcMode="discrete" repeatCount="none"
fill="freeze" />

</circle>
</g>

The first animates the x position of the object (specified by the attribute and
value attributeName="cx" and the second animates the y. In brief, this
circle is going to move from 0 to 200 on the x-axis and from 600 to 550 on
the y-axis. This movement is achieved in a duration of 2 seconds. This code

88

Chapter 6. TimeMapperWMS prototype implementation

thus only shows a single animation segment. To animate an object over a pos-
sibly very long trajectory from data in the database, the procedure is to add
XanimIB_A35B and YanimIB_A35B animation elements for each segment.

The calcMode attribute specifies what type of animation should be displayed.
Among the options offered by SMIL are "discrete" for a stepwise anima-
tion and "linear" for a linearly interpolated animation. In this case, we
show "discrete" which implies that the movement will happen in leaps. If
"linear" is chosen, the client-side application (browser) automatically calcu-
lates the intermediate positions where the object should be shown for the ani-
mation to appear smooth.

In chapter 3, we had predicted that we would use the keyTimes/value method.
The reason we opted for these less compact separate animation clauses is that
in the following type of animation, as we will now see, use had to be made of
time-stamps individually. It made more sense to build sister-animations (over
the same segments) using the same time values than to use different methods.

Animating interpolated tracks

The task of animating interpolated tracks revealed to be considerably more
complicated. SVG does not have a built-in method for rendering lines of chang-
ing lengths. Hopefully, the SVG community provides many work-arounds for
those features not (yet) implemented. The technique adopted here consists of
using an SVG path element like the following and entering the proper parame-
ters in a rather complex ECMA-Script function.1

<g id="IB_A35B_track" fill="none" stroke="lightblue"
stroke-width="10">

<path id="IB_A35B_track0" d="M0,600 l200,-50">
<animate id="dashAnimA35B0"

attributeName="stroke-dashoffset"
dur="2s" begin="0s" fill="freeze" calcMode="linear"/>

</path>
</g>

The attribute d is the actual path. M0,600 is the coordinate of the starting point
and l200,-50 is a relative translation from that point. Again, we only pasted
the code for one single segment. However, in this case, only one <animate> is
necessary to display the growing segment both in x and y directions.

Regarding the projected functionality of informing the user on which trajectory
positions are real data an which have been interpolated, preliminary testing
convinced us that the implementation of this feature could be postponed to a
later stage. In effect, firstly, the real positions are available in the MCB mode
and secondly, in most cases, the angles between segments of iceberg trajectories

1The code of this function can be found in of Appendix D.2.

89

6.3. Client-side visualization functionalities

are big enough to be obvious to the user when interpolated tracks are switched
on. The procedure we propose to implement this informative functionality is to
use SVG’s set animation element. We used this method in the implementation
of the feature we present in the following paragraph.

Making objects appear and disappear

Objects such as icebergs appear and disappear. To render these existential
changes, we made use of the set element and applied it upon the visibility
attribute of the objects themselves. At the time an object “came to existence”,
it’s this attribute is set to "visible" and at the time it disappeared, it is set
to hidden.

Because of time constraints, animations to emphasize existential changes have
not yet been implemented. This could be done in several ways. We could use a
very similar method to the one just explained for their appearances and disap-
pearances. We would use multiple set elements2. The frequency of the blinking
or flashing could be fixed adequately. We foresee that there will be a tradeoff
between the effectiveness of the blinking for an emphasis purpose and the por-
tion of the object’s trajectory over which this blinking will take place. Another
way would be to insert new objects which represent the calving events. In this
way, the blinking or flashing would emphasize the event at the position that it
took place.

Brushed animations

For brushed animations, from a visualization point of view, stepwise animations
would render acceptable results. In that sense, nothing remains to be done on
the client-side to render brushed animations. However, animations built in this
way would not reflect what happened in reality. We might prefer to again make
use of SVG’s set animation element and apply it on the x and y positions of the
objects. This has not been implemented yet but shouldn’t be difficult to achieve.

Animating attribute changes

Animating attribute change is done using elements almost identical to those for
position changes. The parameter that differs is the attribute of the object that
shall be animated. Instead of attributeName="cx" or ="cy", attribute
Name="r" is animated.3

2Or a keyTimes/values method if it exists with the set element
3The code of such animations can be found in Appendix D3.

90

Chapter 6. TimeMapperWMS prototype implementation

6.3.2 Building temporal legends

The temporal legends were built following the same principle and methods as
the animations. First their graphics are scripted and then their dynamic be-
havior.

The graphics of the time-bar legend are composed of three rectangular elements
and two text elements. One rectangle represents the the time not yet elapsed
(or future), another the past and the third serves as present vehicle-sign. The
objects are animated in a very simple manner as we described in chapter 2 for
Harrower’s time-bar legend.4

Three different types of cyclic temporal legends were implemented. The first
corresponds to the the small version of the pie cyclic temporal legend planned
in the design chapter (the result can be seen in fig. 7.3. It was a challenge
to develop because no SMIL technique exists to animate growing pie-portions.
We had to use several rotating, appearing and disappearing half circles that
graphically seem to be one single growing pie-portion.5 Originally, we intended
for the colors used to represent the past and the future to be the same as those
used in the time-bar. We now believe that this would not be appropriate because
the span of one cycle does not correspond to the span of the time-bar.

As planned, a small and a big cyclic legend mainly made of a rotating watch-
type hand were also implemented. The first can be seen in figure 7.2 and the
second in figure 7.1. We will evaluate the design of these three types of cyclic
legends in the next chapter and recommend the further development of the big
pie-portion cyclic legend that we describe in our design.

We have not yet implemented a digital clock. Although its principle is very
simple, its realization is somewhat more demanding. It will involve three main
mechanisms. The first consists of getting the time of the animation. The second
is to get the system to update the time of the clock at a high frequency both
when the animations are playing freely and when they are triggered by the
time-slider. The third – and most challenging – is to generate real-world time
strings in a multi-unit time format from display-time in seconds.

The first and second can be achieved by running the SVG function getCurrent
Time() (present of the animation in display-time) at a rapid frequency and to
update the value of the string. To go about the third, we propose a series of
calculation steps:

1. Divide present of animation (in display-time) by the temporal scale.

2. Add start-time of temporal-extent.At this stage, we have real-world time
in seconds since 1/1/1900 (RWT1900).

3. Use the following calculations to determine which year the present mo-
ment of animation represents.

4Code in appendix D4
5Code in appendix D5.

91

6.3. Client-side visualization functionalities

4. Divide RWT1900 by the number of seconds contained in a 4-year span
(necessary because of bissextile years)

5. Multiply that result by 4 and store it as: ‘years from 4 cycle’.

6. Take the remainder of the division and successively attempt to divide it
by the number of seconds in a 3-year cycle, a 2-year cycle and in 1 year
till an integer is output (only on 3rd round is 0 considered the answer).
For this, we need to know when in the 4-year cycle the bissextile years are
placed.

7. Once this integer is found, we add it to the result above (‘years from 4
cycle’) and further add 1900. At this stage, we know which year we are in.

8. The remainder of the previous calculation is the time in seconds of the
moment within the year. Analog steps must be applied to determine which
month and which day the animation is depicting.

6.3.3 Controlling time: time-slider and other functionalities

The time-slider

The time-slider was the most important challenge for our project. In our at-
tempt to control time, the first step was to affect the temporal moment of an-
imations at all. The second step was then to build a slider to offer the user a
convenient way of controlling that moment.

After much looking around into complicated ways to control the moment of the
animations, three simple lines of ECMA-Script did the trick:

SVGDocument = evt.target.ownerDocument;
SVGRoot = SVGDocument.documentElement;
SVGRoot.setCurrentTime(time);

The last line is actually the one that “acts”. The two others have the function of
storing the object over which it is meant to produce its action. It was however
mastering these two first lines that was the most difficult, as, for that, we had
to understand how the SVG XML DOM was built.

The code of the slider itself was borrowed from carto.net [52], a website spe-
cialized in SVG cartography, which provides many GUI items for mapping.6 It
revealed to be very simple to use.

TimeSlider = new slider("TimeSlider","TimeSlider",300,650,
value1=beginTime,700,650,value2=endTime, 0, TSliderStyle,
invisSliderWidth1,"sliderSymbol",controlTime,true);

To design our slider, we entered beginTime and endTime of the time extent to
be visualized as values of the beginning and end of the slider. As the user drags

6This slider was first developed in JavaScript by Kevin Lindsey [40].

92

Chapter 6. TimeMapperWMS prototype implementation

the thumb – here, the present vehicle-sign – a variable called value changes.
The slider triggers a function that we called controlTime. This function in
turn triggers the code presented above: SVGRoot.setCurrentTime(time).

Play, pause and loop functions

In addition to the time-slider, play, pause and loop functions were implemented.
The pause function makes use of the SVG pauseAnimations() mechanism
and the play function of “un-pauses” the animations. The looping function was
implemented by having the end event of the time-bar legend trigger a function
which sets the present time of the animations to 0.

6.3.4 Providing visualization options to the user

Providing the user with the possibility to choose the different types of visualiza-
tion modes and to turn on or off the additional visualization aids was done by
using event-triggered functions. While in SVG, an event can be a ‘mouse-over’,
a ‘mouse-out’ or a ‘mouse-move’ (such as used to drag our sliders), here, we only
used ‘click’ events.

When the user, for example, chooses to visualize motion dynamics, he clicks on
the appropriate tick-box. This triggers an ECMA-Script (ECMA) function that
activates the desired visualization mode (by setting the appropriate parameters
via the DOM) and deactivates the other visualization modes. To give an exam-
ple, for changing from the distribution visualization mode to motion-dynamics,
four main actions are triggered.

1. The tick-box changes appearance to indicate to the user that that visu-
alization mode has been activated. Symmetrically, the tick-boxes of the
other visualization modes are deactivated.

2. Also for the purpose of informing the user on what he should expect, the
title of the visualization is set to indicate what visualization mode the
application is in.

3. The value of the calcMode attribute is changed to "linear", which, as
seen above activates linearly interpolated animations.

4. Because we recommend interpolated tracks for supporting motion-dynamics
visualization, the motion tracks animations are set to be visible as well.
These can be deactivated by clicking the appropriate button.

The main mechanisms behind these actions have already been presented above.
They act on the attributes of SVG elements. For several of the actions above,
the ‘visibility’ of objects (and tracks) is set using the attribute display. It is
set to "none" to make an element virtually disappear.7

7This attribute may have advantages over the ‘visibility’ attribute concerning the load put
onto the computer’s memory [80].

93

6.4. Serializing: generating interactive animated maps

6.4 Serializing: generating interactive animated maps

As foreseen in the previous chapter, the serialization done by our map server is
the process of converting data and graphical user interface elements into SVG
and ECMA-Script files. Together, these code in these files compose the desired
application. Serialization was implemented with the Java programming lan-
guage. The work mainly consisted of converting the data into SVG animations,
storing temporal values as ECMA-Script variables and building ECMA-Script
functions that loop over all objects to set the time of their begin and dur at-
tributes. A smaller part was to serialize the GUI and interactive functionalities.

6.4.1 Querying the database

To build the stepwise and interpolated animations as well as to store ECMA
variables, the first step is to query the database using the spatial bounding-box,
the temporal extent and the type of animation entered by the user. As planned,
both spatial and temporal intersects were implemented and the output is a view
of the data with those iceberg tuples which match the request.

To implement brushed animations, the main task that is to query the database
in the a different way than it is done for “simple” animations. For each repeti-
tive cycle of the temporal extent, the data values of the objects’ instances which
are closest to the repetitive date shall be retrieved.

At present, the mechanism that queries the database has not been fully au-
tomated. The user is not yet free to specify the temporal extent he wishes to
visualize. The work needed to achieve this is however known to be realizable.

6.4.2 Building animations from the data and storing time-stamp
variables

To build the SMIL animations and store ECMA variables, we consider that the
data view described above is ordered first by object (icebergs) and then by time
instances (as shown in figure 6.1-A). The tuples of every object are indexed.
For each segment that a given object travels, an x and a y animate elements
are generated. These animate elements get names like "XanimIB_A35B_0",
YanimIB_A35B_0, "XanimIB_A35B_1", etc. . . For one x and one y animate
elements, the values of the from and to attributes are set in the following way:
for the x-animate, the x-position of the first point of a segment is injected into
the from attribute and the x-position of the second point is injected into the
to attribute. The time-stamps of every position are stored in ECMA variables.
These animation generation and variable storage are represented in figure 6.1-
A. For the time-being, the reader need not attend to figure B; we will come back
to it in the next section.

94

Chapter 6. TimeMapperWMS prototype implementation

34
40

53
44

00

In
de

x
ID

TI
M

E_
IS

O
TI

M
E_

SE
Cs

19
00

G
EO

M

0
A

35
B

 2
00

9-
01

-0
8

PO

IN
T(

-5
6,

-3
4.

2)
1

A
35

B
 2

00
9-

01
-1

5
34

41
13

92
00

PO
IN

T(
-5

5,
-3

2.
3)

2
A

35
B

 2
00

9-
01

-1
7

34
41

31
20

00
PO

IN
T(

-5
3.

7,
-3

5)
3

A
35

B
 2

00
9-

01
-2

0
34

41
57

12
00

PO
IN

T(
-5

3.
7,

-3
5)

4
A

35
B

 2
00

9-
02

-1
1

34
43

47
20

00
PO

IN
T(

-5
1.

7,
-3

1.
6)

0
A

36
 2

00
8-

12
-0

7
34

38
89

28
00

PO
IN

T(
-7

0.
4,

-6
2.

3)
1

A
36

 2
00

8-
12

-2
0

34
37

76
96

00
PO

IN
T(

-7
3.

7,
-6

1.
4)

2
A

36
 2

00
8-

12
-3

1
34

39
84

32
00

PO
IN

T(
-7

6.
5,

-6
3.

6)

Ic
eb

er
gs

<c
irc

le
 id

='
IB

_A
35

B'
>

 <

an
im

at
e

id
="
Xa

ni
m

IB
_A

35
B_

1"

 a

tt
rib

ut
eN

am
e=

"c
x"

 f
ro

m
 =

"-

55
"

 to
 =

 "

-5
3.

7"

 b

eg
in

 =
 "

 "

du
r =

 "

 "

/>

 <

an
im

at
e

id
="
Ya

ni
m

IB
_A

35
B_

1"

 a

tt
rib

ut
eN

am
e=

"c
y"

 f
ro

m
 =

"-

32
.3

"

 to

 =

 "
-3

5"

 b
eg

in
 =

 "
 . .

 . "

 d

ur
 =

" .
 .

. "

 />
<c

irc
le

/>

}1
 s

eg
m

en
t

34
41

13
92

00
PO

IN
T(

 -
55

 ,

-3
2.

3
)

34
41

31
20

00
PO

IN
T(

 -
53

.7
 ,

 -3
5

)

SV
G

IB
_A

35
B_

Ti
m

e[
1]

 =
 3

44
11

39
20

0;
IB

_A
35

B_
Ti

m
e[

2]
 =

 3
44

13
12

00
0;

IB
_A

35
B_

La
ps

[1
] =

 1
72

80
0;

Ja
va

Q
ue

ri
ed

 D
B

U
se

r
In

te
rf

ac
e

User inputSystem response

St
or

e
TS

ca
le

 v
al

ue
Ca

lc
ul

at
e

be
gi

n
an

d
du

r v
al

ue
s

EC
M

A
-S

cr
ip

t

A
) S

ta
te

 o
f c

od
e

af
te

r t
he

 u
se

r’s
 re

qu
es

t
B)

 U
se

r s
et

s
te

m
po

ra
l s

ca
le

Figure 6.1: A) The Java serializer takes selected iceberg instances to build animations and
store time-stamps in ECMA-Script variables — B) When the user sets the temporal scale, the
‘begin’ and ‘dur’ values are calculated from the stored time-stamps, and injected into the
animations. These can then be rendered in the client. 95

6.5. Setting the temporal scale: a functionality that binds all

An analog procedure would be followed to generate animations of the size of
the iceberg symbols. Although the mechanism is ready for implementation, the
serialization functions have not yet been scripted.

6.5 Setting the temporal scale: a functionality that
binds all

To explain how the speeds of animations are set, we will start by explaining how
the user inputs the temporal scale and what we did to optimize this functional-
ity. Then, we present the mechanism that makes use of the temporal scale set
by the user to render animations at the requested speed.

6.5.1 Setting the value of the temporal scale

The way we found to control the speeds of SMIL animations was to dynamically
change the values of their begin and dur attributes. To display an animation
at a “low speed”, we multiply its real-world time stamps (RWTS) by a relatively
big temporal scale and to display it “fast” by a relatively small temporal scale.8

A slider similar to the one described above was used. However, the original code
did not intend for developers to enter non-integer values (such as we need for
temporal scales). So to get the small values needed, we made the slider output
a factor (very much resembling a spatial scale factor) that would further need
to be “inverted” (‘1/x’ calculation).

Preliminary testing showed us that, for large temporal scale values (slow speeds),
it was very difficult for a user to set the slider conveniently. The reason is that
a relatively short slider had to output temporal scales going from 0 to 1000. So
even to change the temporal scale from the slowest speed to ten times that, the
user needed to drag the slider over only 1/100th of its total length.

To solve this problem, we analyzed the relation existing between the input value
and the output temporal scale value. This was a linear relation: 0 goes to 0, 10
goes to 10 and 1000 goes to 1000. Figure 6.2 shows this linear relation and the
curve that we propose to replace it with. We estimated that the user should
move the slider approximately by 100 to get an output 10, by 500 to get an
output 200 and of course 1000 to get an output of 1000. We matched these
values with the polynomial equation y = 5 · 10−7x3 + 0.0005x2 + 0.0423x.

This problem solved, we may now report on how the user is informed of the
value of the temporal scale. As planned, this value, as well as the duration of
the total animation (in display time) are offered to the user as dynamic text
inside the animated map display. To do the latter, we need to multiply the real-
world time-extent (stored as an ECMA variable in ‘seconds since 1/1/1900’) by

8E.g., to view two years of iceberg data in 2 minutes the TScale should be 1.9*10-6 and to view
it in 30 seconds, the TScale shall be ca. 4.8*10-7

96

Chapter 6. TimeMapperWMS prototype implementation

0

200

400

600

800

1000

200 600 800 1000

Linear relation

De
sir

ed
 re

la
tio

n

Matched curve

800

Figure 6.2: Transforming a linear relationship to a 3rd degree polynomial curve to provide the
user with more flexibility

the temporal scale and set the value of an SVG text element to the informa-
tional text-string.

6.5.2 Setting the start-times and durations of the animations

Setting the start-times and durations of the animations (values of the begin
and dur attributes) according to the temporal scale input by the user was
achieved via DOM manipulation. This process is represented in the figure 6.1-
B, already seen above.

To be accessible via the DOM, all the SVG animate elements – including the
animations of the temporal legends – need to be retrieved into ECMA-Script
variables. The RWTS stored by the serializer in ECMA variables are multiplied
by the temporal scale and injected back into the animate elements as values
of the begin attributes. The code below shows a simplified9 example of this
procedure for one single start-time (begin attribute):

IB_A35B_Time[0] = -432000;
IB_A35B_Animbegin[0] = IB_A35B_Time[0]*TScale;
XanimIB_A35B_[0] = SVGDocument

.getElementById(’XanimIB_A35B_0’);
XanimIB_A35B_[0

.setAttributeNS(null, "begin", IB_A35B_Animbegin[0]);

Similar procedures are used to inject appropriate values into the dur attributes
of object animations, into begin and dur attributes of temporal legend anima-
tions and into the end value of the time-slider. The only difference for setting

9The true code includes loops.

97

6.6. Integrating WMS map backgrounds and additional data

the dur is that these durations need to be calculated from two object time-
instances (by subtracting RWTS[i] from RWTS[i1]+). Setting the end-value
of the time-slider is critical. In effect, a change of the temporal scale involves
a change of the display time-extent and the beginning and end values of the
slider should always correspond to this duration.

6.6 Integrating WMS map backgrounds and additional
data

RIMapperWMS’ developer managed to make the system zoom and pan external
WMS layers. It was therefore possible to integrate valuable map backgrounds
on Antarctica. The layers we got came from the Antarctic Cryosphere Access
Portal (A-CAP) [69].10 Among others, we included as base-map: the Antarc-
tic continent and islands, the ice-shelf, the coastline, the Antarctic circle and a
lat/long grid. Unfortunately, the portal did not contain an appropriate bathy-
metric layer. As additional layers, we added lines representing ocean current
fronts, geographic names and a layer showing classified sea-ice concentrations.
Unfortunately, the latter shows only one static state and was only included as
an example of interesting data to correlate to iceberg dynamics.11

6.7 State of the implementation

The present stage of the implementation allows us to confirm that combining
WMS Time Dimension and SVG interactive animation is viable. Both Get-
Capabilities and GetMap mechanisms work. At this stage, only a temporal
subset of the data can be visualized but the implementation of a more flexible
response mechanism is on its way. During the implementation phase, the client-
side animation and interactivity were developed to run in the Opera browser.
Currently, it is the only browser that offers a built-in SMIL rendering engine.
However, we have good hope that the amount of work to make the implementa-
tion run in other Internet Explorer and Safari might be small. To make it run
in Mozilla Firefox and Chrome using their internal SVG capabilities, a work-
around called fake-SMIL could probably be used.

Regarding client-side visualization functionalities, most of the animation and
interactivity features that we intended to develop are functional. We will present
these more extensively in the next chapter. No obstacle stands before the imple-
mentation of the remaining functions. In some cases, the client-side animation
mechanism is ready to be automated on the server-side. For other tasks, we
still need to think about the best implementation approach.

10The number of layers available is impressive, the datasets offered are even more numerous
and A-CAP projects to offer all their resources as WMS layers, which is promising for iceberg
studies.

11A-CAP actually offers time-series sets of images of sea-ice concentration.

98

Chapter 7

Results, testing and
evaluation

7.1 Introduction

The result of our implementation is a WMS prototype that we call TimeMapper,
which is destined to visualize iceberg dynamics. The dataset used is the NIC’s
Antarctic Iceberg Dataset [49]. The graphical appearance of the system can be
seen in figure 7.1. We consider this result to be composed of generic animated
mapping functionalities on the one hand and visualization functionalities spe-
cialized for moving-object data on the other.

The main generic features that we implemented are: a mechanism for the user
to choose the temporal extent of the animations, temporal legends, a time slider
and a way for the user to control the speed of the animations. A less central
but yet significant feature is the looping function we implemented. The more
specific features developed are different types of animations for moving-object
visualization and their attributes. The different object animations include the
stepwise animations and the interpolated animations, including the objects’ in-
terpolated tracks.

In this chapter, we shall report on the testing and evaluation that we did of
these two kinds of features. Our objectives are of two types: First, we wish
to assess how well the generic features function. Second, we will try and de-
termine the respective advantages and flaws of the different types of anima-
tions proposed. How well do the animations – those for destined to visualize
the evolution of distributions (MCB-Ds) and those destined to visualize motion
dynamics (IMBs) – fulfill their purposes? In addition to these objectives, we
would have liked to explore the dataset more in depth and try to detect spatio-
temporal patterns in the data. In effect, to make a full evaluation of the features
proposed, we would need to assess the system’s effectiveness for detecting such
trends. This objective however surpasses the scope of this research and was not
possible because of time constraints.

99

7.2. System testing: functionality and limitations

Since the implementation is still in an early phase, it has various runtime lim-
itations. We will start by stating what these limitations are and how they can
be partially sidestepped. After that, we will begin the evaluation per se. We
should mention that in addition to our own testing, we had planned to have our
system evaluated by one or several data exploration or iceberg specialists but
because of time limitations again, this was unfortunately not possible. Finally,
we shall step back from the prototype and evaluate how well the design and
implementation of the system could (1) be used to visualize other moving-object
datasets and (2) be extended to visualize other time-series datasets.

7.2 System testing: functionality and limitations

7.2.1 How well do the prototype’s functionalities work?

A five-year subset of the data was used to dynamically generate GetMap re-
sponses for all the iceberg objects existing in that time span. We chose the years
1999 to 2004 as our time-extent because of the major calving events which took
place during this period.

In addition to functionalities to manipulate the temporal dimension of the phe-
nomenon, the original graphical user interface of RIMapperWMS is also part
of the TimeMapper system. Both zooming and panning functionalities provoke
new GetMap queries to the servers: spatial subsets of the icebergs are dynam-
ically loaded along with additional WMS layers on Antarctica (which we get
from A-CAP’s map server).

The application loads quickly and the generic features implemented are all
functional. However, the response speeds of the temporal scale setting func-
tion and of the time-slider are poor when many objects are visualized. The user
needs to wait nearly one minute for the speeds of the animations to get set.
Once the temporal scale has been set, all animations function well despite the
large number of objects visualized. The time-slider works as well but in a very
lagged way. Its responsiveness is so slow that it makes it unusable.

Because of these limitations, we decided to take a much smaller subset of the
data to effectuate our tests: we took only three icebergs. This improved the
responsiveness of both the temporal scale and the time-slider functionalities.

7.2.2 Solutions to improve responsiveness

The reason why the system takes a long time to integrate a temporal scale value
entered by the user is that the values of the begin and dur attributes of hun-
dreds of animation elements need to be set and that this setting passes through
the XML DOM. Four solutions have already been identified to solve this prob-
lem. One of them involves making use of the much more compact way of writ-
ing animations constituted by the method we called the keyTimes/values

100

Chapter 7. Results, testing and evaluation

method.1 The two others were recommended by an SVG and SMIL expert.2

The fourth solution is not yet implementable. SMIL already has a built-in way
of controlling the speeds of animations. This technique has been integrated in
the upcoming version of SVG but is not yet rendered by any existing browser.

To improve the effectiveness of the slider for controlling large number of an-
imations, it appears in this case also, that using the more compact form of
animation that we called the keyTimes/values method offers a good chance
of improving this responsiveness. Because of testing we did, our guess is that
it will either improve it drastically or not at all. Even with the three object
test-case, the number of animations is larger than 30. Our testing indicates
that it may well be the number of animations, and not their complexity, that
provokes lagged responses. In effect, we tried to interactively control complex
animations such as combined rotations, re-scaling, color changes and even the
morphed-paths animation that we saw in chapter (p.??). Their responsiveness
to slider movements are all amazing. All these animations are characterized by
a small number of animate elements but also by rather complex effects.

7.3 Evaluating the generic interactive functionalities

Time-slider

The time-slider works well with few objects and there is good hope of transform-
ing the animations to make them more easily controllable. and in those con-
ditions, the responsiveness of the animations to the user’s mouse movements
is amazing. Unfortunately, the advantage offered by the time-slider increases
with the number of objects and the complexity of the behaviors observed. In
effect, it is in such conditions that the user has trouble making sense of, and
remembering what he sees. Therefore, evaluating the true value of the time-
slider will only be possible if we manage to make the changing of the moment
of animations less heavy for the computer’s memory.

Looping

The looping function works well. It also provokes a delayed effect between the
end and the new beginning when the number of objects is large. Because we
could not reset the temporal extent and because looping over five years of move-
ment data made no sense, we could not evaluate the usefulness of this function-
ality.

1This method would reduce the number of ‘animate’ elements by a factor of ca. 50.
2They consist of methods to neutralize known limitations of the DOM structure.

101

7.3. Evaluating the generic interactive functionalities

Temporal scale setting

Apart from the mentioned response time limitation with numerous objects and
animations, the temporal scale setting function works very well. The work
we put into making the relation between the slider position and the output
temporal scale makes it much easier for the user to choose an accurate value
for the speed of animations (which was formely impossible).

Temporal legends

One time-bar and three types of cyclic temporal legends have been implemented
and we shall now attempt an evaluation of their effectiveness.

We said earlier that time-bar legends can potentially serve two purposes, the
first of which is to help the user orient himself in time: what moment of the
animation are we viewing (in respect to its beginning and its end)? The second
is to give him an idea of the speed at which the real-world phenomenon is being
depicted. With the present test-case of the prototype, the time-bar is useful for
both of these purposes (the time-bar can be seen in figure 7.1. However, the
absence of a digital clock implies that the user needs to keep in mind what are
the start and the end times for the moments and the speeds to be meaningful.
A digital clock is therefore required. The full advantages of the time-bar will
come with the possibility for the explorer to choose the start-time and end-time
of the animations. With smaller and task-specific time-spans (e.g., one year),
the time-bar will be more useful.

Regarding cyclic temporal legends in general, our impression is that they are
very useful to the user because their cycles provide him with a constant tem-
poral reference frame. No matter what the speed or the temporal extent of the
animation, one cycle corresponds to the same amount of time (in our case, one
year). In addition, as stated in the literature, the angle of the rotating hands
provides the user with the means to know what time of year is presently being
visualized. This is particularly useful for the study of phenomena which, like
icebergs, have a seasonal component.

The test cases we had did not fully allow us to compare the three cyclic legends
developed. In general, our impression is that all three have different advan-
tages. The ‘small hand’ is discrete and hardly takes any space in the display
(see fig. 7.2a. Of the three cyclic legends, the ‘small pie’ is the one which ob-
structs the display the most (see fig. 7.3). For some mapped areas, there may
be a convenient place to put the legend but for others, there may not.

As explained earlier, the advantage of the ‘small pie’ is that it provides an ad-
ditional indicator for an event-related beginning of cycle. However, one could
argue that simple line at the place of the cycle considered to be the start could
just as well serve this purpose. The question that remains is whether the grow-
ing pie-portion improves to user’s perception of which stage of the cycle he is
visualizing. The ‘big hand’ has the advantage of totally freeing the center of

102

Chapter 7. Results, testing and evaluation

Figure 7.1: The TimeMapperWMS prototype in ‘distribution’ visualization mode (here with the
‘big hand’ type of cyclic temporal legend

Figure 7.2: Two stages of a ‘motion dynamics’ visualization showing two icebergs (and a third
one which is grounded): In a), the two icebergs are traveling at similar speeds and in the
same direction. In b), the two icebergs have taken different trajectories.

103

7.3. Evaluating the generic interactive functionalities

Figure 7.3: The ‘small pie’ cyclic temporal legend

Figure 7.4: Moving cluster pattern: a. Cluster of icebergs soon after a major calving event,
b. Six months later, the icebergs have traveled North West by 500 to 1500 km.

104

Chapter 7. Results, testing and evaluation

the display. But our impression after little testing seems that the hand rotating
around may be distracting.

7.4 Evaluating animation types for moving-object vi-
sualization

Limited testing enables us to confirm that the two types of animations imple-
mented indeed favor different visualization tasks. The user’s attention is auto-
matically brought upon different types of behaviors.

With the ‘distribution mode’, our attention mainly went to groups of objects.
Major spatio-temporal trends in the objects’ distribution were easily detected.
For instance, as suggested in figure 7.43, after a major calving event from the
Ronne Ice-shelf in 2001, a large cluster of icebergs traveled North-West along
the Antarctic Peninsula between. Other icebergs were more dispersed in space.

In contrast, the distribution mode is not effective to visualize individual mo-
tion dynamics because the viewer needs to remember where the last position
visualized was.4 In addition, the fact that position changes happen in sudden
jumps keeps the viewer from having a unified perception of the movement he is
witnessing.

In the ‘motion-dynamics’ mode, the user’s attention is attracted by individual
motion behaviors. With our subset test-case composed of three icebergs, the di-
rections and speeds of movements are easy to visualize. Similarities and differ-
ences between individual behaviors can also be detected. Figure 7.25 shows two
stages of such a visualization. In the first two icebergs are moving in similar di-
rections and speeds (at the same time and in the same region). The interpolated
tracks are particularly helpful to compare such trajectories. A third iceberg is
grounded close to its time of calving. It will remain grounded for several years
but the data still contains minute in its position.

The two frames of the mentioned figure also show an additional WMS layer
with (static) ocean current fronts. The red line is the limit of the Antarctic
circumpolar current. In the first visualization, it seems probable that the mo-
tion of the two icebergs are both influenced by the same current. In the second
frame, the two icebergs have taken different trajectories. The one on the left
seems to have got caught in a sort of circular current. The one on the right
follows the current for a period of approximately 6 months before disappearing.
Animation is more useful in the exploration of the first phase than it is for the
second because it enables the viewer to observe the relative movement between
the two objects.

3These results have been simulated because, at the time of taking these screen dumps, the
server was not functioning with large numbers of icebergs.

4Solutions to this have however been found, by using progressive fading of the previous posi-
tions. We however don’t think this would work well with many objects.

5In the figure, we have digitized the tracks and made their stroke wider for better visibility
and we also increased the size of the iceberg symbols.

105

7.5. Using the system for other datasets and extending its capabilities

One might be tempted to compare these animations with possibilities offered
by static mapping. However, as we have seen earlier, this question has however
already been answered by other authors: special techniques are necessary for
the visualization of time-series georeferenced data.

The icebergs sometimes appear to move at irregular speeds. While part of this
behavior may be explained by real-world iceberg speed variations, it is certainly
also due to limitations of the dataset. When we presented the Antarctic Iceberg
Dataset, we predicted that the low temporal precision of the recordings would
be a limitation. The fairly low temporal resolution is also a limitation. As
an example to demonstrate this, we can analyze the case of an iceberg moving
slowly over a short distance. Between the two recorded positions, the object may
have followed a long and complicated trajectory. We conclude after others that,
in cases where the temporal resolution is not high enough to record a sufficient
proportion of the changes taking place, interpolation can make a viewer draw
erroneous conclusions.

Similarly to our above conclusion that motion is not well rendered by stepwise
animations, we assert that studying distributions with interpolated animations
is not as effective as with non interpolated animations. In effect, motion that
can easily be followed by the eye unnecessarily loads the user’s cognition. With
the distribution mode, although the user can often see from where to where
individual objects move, these individual events can easily be ignored to assess
the change over the positions of the entire population (or a subset).

7.5 Using the system for other datasets and extend-
ing its capabilities

Except for its responsiveness limitations, the present version of the system
could already be used to visualize other moving-object datasets. New function-
alities to animate some of the visual variables, such as hue and value could very
quickly be implemented.

The interactive functionalities of the system are built in a way that makes them
perfectly usable for controlling other types of animations. Preliminary testing
has shown that re-scaling, rotations and complicated shape transformation an-
imations can already be controlled by the present features.

106

Chapter 8

Conclusion and
recommendations

8.1 Combining distributed services and vector ani-
mation

The main objective of this research was to look into possibilities, both from
theoretical and practical perspectives, of combining animated and interactive
vector graphics with distributed geo services. This double objective has been
fully attained. We pointed out the two frameworks that appeared to be most
promising for this combination: OGC’s WMS and the W3C’s Scalable Vector
Graphics. We showed on a theoretical level that they could be combined and
demonstrated it on a practical level by developing an animated mapping WMS
prototype. This web application, that we call TimeMapperWMS was built for
visualizing moving object data in general and iceberg dynamics in particular.

The fundamental research task to achieve this combination was to determine
how the time dimension of the data had to be manipulated. We determined how
the temporal attribute should be stored, queried and converted to be further in-
tegrated in the vector graphics animation. The storage must be done according
to the ISO 8601 extended format for the system to comply with OGC’s standard.
The data should be queried by applying a temporal intersect to the data in addi-
tion to the spatial intersect. Once a view of the data is retrieved which matches
the user’s request, the temporal attribute further needs to be converted. We
identified a series of steps to effectuate this conversion. The last step applied is
to multiply real-world time-stamps by a temporal scale.

To integrate these mechanisms within the WMS framework, we also specified
the ways in which the GetCapabilities and GetMap requests/responses needed
to be implemented.

107

8.2. Designing a visualization environment for iceberg dynamics

8.2 Designing a visualization environment for iceberg
dynamics

The review we did on animated mapping literature helped us to identify the
most important features to offer in an animated mapping exploratory environ-
ment. Further, reviews on moving object and iceberg literature were used to
point out which of these features were central for the development of our proto-
type.

Traditional temporal user controls in animated mapping are similar to VCR or
DVD-player functions: pause/play and stop are the basic. Looping has often
been proposed as well. A set of five more visualization features more specific
to temporal animated mapping were also identified: (1) The user should be
given the possibility to specify the temporal extent of the data that he wants
to visualize. (2) Temporal legends should be offered to help the user orient
himself within the temporal dimension. (3) Interactive control over the moment
of the animation should be made possible via a time-slider – similar to sliders
in computer-based media players. (4) The user should be provided with a way
to control the speeds or temporal scale of the animations. (5) The user could
benefit from a functionality destined to quickly generate and organize small-
multiple maps (which are complementarity with animations).

A framework for moving object data visualization was adopted from our lit-
erature review. This framework was one of the tools we used to analyze an
iceberg visual exploration use-case. The aim of this analysis was to understand
the visualization requirements of specialists from various fields interested in
icebergs. This led us to identify three main visualization tasks for which ani-
mated mapping could be helpful. Different types of animations were identified
as potentially the best ways of going about these tasks.

The first tasks is exploring the evolution of the distributions of the whole popu-
lation (or a subset) of icebergs. For this purpose, we designed and implemented
simple stepwise animations of the data. The second task is to study the motion
dynamics of the objects. These dynamics comprise the movements of objects in
space but also their relative movement (between objects). For this, we proposed
two features: linearly interpolated animations of the objects’ positions and, in-
terpolated tracks. The third task is to compare object distributions at repetitive
moments. For our case-study, we intended to compare the distributions of ice-
bergs over several years but only taking one (and the same) date of each year.
To realize this objective, we proposed to make use of so-called brushed anima-
tions of the data.

Apart from these main visualization tasks, we also proposed to use animation
to study the dynamics of attributes of our moving objects as well as appearance
and disappearance phenomena (existential changes). The attribute that we
were interested to visualize for icebergs was their size. We logically proposed to
animate the visual variable size of the symbols representing the icebergs. Ex-
istential changes are automatically depicted by simple animations of the data

108

Chapter 8. Conclusion and recommendations

(the symbol appears at the time representing the first time-stamp present in
the data for that object. However, these existential changes might happen to
discretely to be noticed by the user. To solve this problem and emphasize these
events, we proposed to make use of the dynamic visualization variable ‘fre-
quency’.

8.3 Implementation of the TimeMapper prototype

To implement the TimeMapperWMS prototype and thus practically combine
the WMS framework and Scalable Vector Graphics animations, we extended
RIMapper, a WMS package developed at ITC which already outputs static SVG
but no animations. The data, including its temporal attribute, was loaded into
a database backend following a WMS-compliant schema. In addition to stor-
ing real-world time-stamps in the recommended multiple time-unit strings, we
stored an additional temporal attribute in a unique time unit (seconds).

Triggered by the user’s GetMap request, the map server queries the database
and does part of the time conversion steps. It then generates animations, inter-
active functions and a graphical user interface that are all sent as a package to
the end-user.

In addition the system was extended to integrate WMS layers from external
map servers. When the user zooms or pans the map, new data is loaded both
for the objects and for the external map layers. In a similar way, we project
to offer the user the possibility to quickly change the temporal extent of the
animations. The system will then have to reload new data based on the new
temporal request.

8.4 Results and system evaluation

The visualization prototype developed offers a set of functionalities integrated
in an easy to use graphical user interface. It has two main visualization modes:
it runs stepwise animations to visualize object distributions and interpolated
animations to visualize object movement dynamics. For the latter, additional
interpolated track animations were also developed.

To support the visualizations, a time-bar and three types of cyclic temporal
legends were developed as well as most of the interactive controls planned. Play,
pause and loop functions are proposed as well as the more advanced features
such as the time-slider and an animation speed control slider.

Although some of the interactive functionalities still have a fairly poor respon-
siveness when used with numerous objects, they are all functional. There is
good hope for the responsiveness impediments to be fairly easy to solve.

Working with a subset of the data, we evaluated the system’s functionalities.
They enabled us to easily detect patterns in the evolution of distributions as

109

8.5. Recommendations

well as in the motion dynamics of objects. In particular, for distributions, mov-
ing clusters were detected as well as dispersion patterns. For motion dynamics,
similarities in speeds and directions between objects as well as divergence of
these same objects were detected. In addition, a static raster overlay of ocean
current fronts enabled us to observe the behavior of icebergs in their approach
of these currents as well as their behaviors within them.

8.5 Recommendations

The fundamental research problem has been solved. The recommendations
that we have therefore are related to the development of better visualization
features.

A few functionalities that we had hoped to develop have not been implemented
yet. This includes: the third type of object animation planned, i.e., brushed
animations; animations capable of emphasizing existential changes in the phe-
nomenon depicted; the essential digital clock temporal legend and the function-
ality which would output small-multiple maps from the animations. In addi-
tion, the mechanism designed to animate the size of objects to reflect attribute
changes stored in the database is ready for implementation. We naturally rec-
ommend the implementation of these functionalities.

For exploring iceberg trajectories, it would be helpful to be able to identify ice-
bergs. Moreover, such a functionality would help researchers share visualiza-
tion cases. 1 For some visualization tasks, it may also be useful to differentiate
iceberg objects with different colors.

Further testing of the system is necessary. The preliminary exploration we did
of subsets of the Antarctic Iceberg Dataset showed promising results. The sys-
tem should be tried with more data subsets which hopefully can become bigger
if we manage to diminish the runtime limitations of the system. In particu-
lar, in addition to distribution dynamics and movement, we propose to explore
calving events more in depth.

In our testing phase, we were only very partially able to evaluate the design
of the temporal legends that we developed. Somewhat related to temporal leg-
ends, in chapter 2, we presented a hypothesis regarding the effectiveness of
temporal sliders. The idea advanced is that, for vector animations, a well re-
sponsive temporal slider can be considered to be a link to another tactile inter-
face embodied by the user’s movements with the mouse. We argue that, with
some experience, the user can have a fairly precise idea of the movement he
is provoking with his hand movements on the time-slider and therefore on the
temporal dimension. We further argue that if this is the case, such a cognitive

1A functionality for displaying information on objects when the user points at it with the
curser has already been implemented in RIMapper and it would not be difficult to use it again
for icebergs.

110

Chapter 8. Conclusion and recommendations

mechanism can reduce the split-attention effect between the map display and
the temporal legends. This hypothesis would need some empirical testing.

Particularly for exploring motion dynamics that can be found in the iceberg
dataset, we would recommend to contact the NIC again and check whether
they possess a version of the data with higher temporal precision. We would
also propose to try the system with other moving object datasets, possibly with
higher temporal resolution.

We had projected to visualize iceberg dynamics with other related phenomena
such as bathymetry, ocean currents and sea-ice concentration. We recommend
to attempt such visualizations, if possible using time-series data of the two lat-
ter phenomena.

Finally, to expend the scope of TimeMapper, we propose to look into possibilities
of generating data-driven animations of other types of phenomena and other
types of data.

111

8.5. Recommendations

112

Appendix A

Scenario to introduce the
three basic needs in animated
mapping

We defend that the three basic needs in animated mapping are: time to get
acquainted, temporal legends and interactivity. To introduce these needs, we
are going to start by presenting a scenario showing the cognitive process trig-
gered by a simple example of a static map reading task. An analyst is given
the job of studying the relations between the (static) distributions of land-use,
water-bodies and urban areas in a particular region.

If a think-aloud experiment was done during the beginning of this task, we
might hear the analyst formulate sentences such as the following:

OK . . . , here is this particular water-body and here is this city. Hem
. . . , so the region in question is . . . grossly . . . this area. OK, we have
this city here and this one here; this symbol represents the main-
road network, this color is forests and this is . . . fields . . . OK, so now
for my task . . .

Examining this fragment from the point of view of the Cognitive Load The-
ory, we could say that before going about his task, the analyst explores or gets
acquainted with the content of the static map and that he stores elements of
information in his working memory one by one.

Now, what lessons can we derive from this example regarding animated map-
ping, that is, for a visualization task where the information displayed does not
remain static but evolves with display-time? In other terms, what might be
the needs of an analyst in the preliminary phase of getting acquainted with an
animated map?

First, the animated map reader needs to get acquainted with the what and
the where dimensions of the phenomenon. Second, in an analogous way, he
needs to get acquainted with the temporal dimension. Kraak and others call

113

this process building an “appropriate temporal schema [39]”. To assist users
in this task, animated mapping researchers recommend the use of temporal
legends. We will present temporal legends more in detail further. Third the
analyst will need to get familiar with the different types of events, processes
and behaviors that are observable in the animation. To do so, he will need to
see various sequences repeatedly and have time to make sense and to store
information about these dynamic processes into his working memory. Once all
these preliminary steps have been completed, the analyst can be expected to
focus his attention, explore and try and understand more elaborate dynamics.

These steps point out at two basic needs in the preliminary phase of exploring
a spatio-temporal dataset using the technique of map animation: a) the need
for time to get acquainted and to make sense of what one is seeing and b) the
need to understand the temporal characteristics of the representation of the
phenomenon under study. To satisfy these two needs, two basic requirements
for the design of animated maps have been pointed out in literature:

1. The need for temporal legends for the user to build an appropriate tem-
poral schema. Kraak and others (Kraak, Edsall et al. 1997) state that
“for users to understand a temporal animation, (. . . they must . . .) apply
an appropriate temporal schema that allows them to interpret meaning
inherent in the sequence and pacing of the animation. They conclude that
the “animated maps should be accompanied by a legend that prompts an
appropriate schema,” i.e., one or several temporal legends.

2. The need for interactivity for the user to have time or give himself time to
get acquainted with the different aspects of the animated maps. Specif-
ically for exploratory purposes, Andrienko and others [6] advance that
““pure” animation is insufficient for supporting exploratory analysis of
time-referred data. An analyst should have at her/his disposal powerful
and convenient facilities to control display time within the presentation.”

Harrower and Fabrikant [30], as well as Slocum and others [72], report that
both in literature recommendations and in animated mapping practices, the
needs for interactivity and for temporal legends have been acknowledged and
taken into consideration. Therefore, in the forthcoming sections, we will never
make distinctions between animated maps with or without interactive controls
and with or without temporal legends as we assume that in all cases where they
are helpful, they are provided.

114

Appendix B

Explanations on Köbben’s SVG
scripted animations

As can be seen in the code below, the mechanism that makes the program dy-
namic is the currVal + 1 expression of the updateAnimation() function.
The ’1’ value can be changed to bigger or smaller values to make the animation
slower or faster. Scripted animations can thus be built using the extended ISO
8601 format for time more easily than SMIL animations. However, as we said,
SMIL animations remain more powerful and simpler to use.

function toggleAnimation() {
if (running) {

running = false;
window.clearInterval(interval);

//alert("stop");
} else {
running = true;
interval = window.setInterval("updateAnimation()",500);

//alert("start");
}

}

function updateAnimation() {
currVal = mySlider.getValue();
currVal = currVal + 1;
if (currVal > 24) {

currVal = 0;
}
mySlider.setValue(currVal, false);
showVal("change", "slider1", currVal);

115

116

Appendix C

Example of periodicity in an
MCB visualization

Figure C.1: MCB-based “Visualization of aggregated movement speeds of white storks dur-
ing two migration seasons: 1999/2000 (top) and 2000/2001 (bottom)” [5]

This figure shows the results of an MCB-based visualization of bird migrations.
It represents the distribution of the intensities of aggregated movement speeds
of flocks of birds. The reader can see here an example of an MCB of another
type than distribution.

117

118

Appendix D

SVG and JavaScript code

D.1 Introduction

The bits of code below are parts of the code used to develop our platform that
may interest the reader. He shall not be surprised that most <animate> ele-
ments do not have any begin and dur+ values. The reason is that these are
dynamically entered client-side – after the animations are loaded – when the
user sets the value of the temporal scale. . .

D.2 Interpolated iceberg tracks

function IcebergTracks(){
for(var i=0; i<4; i++) {
setAnimations(i);
}

}

// workaround for firefox bug (browser cannot execute function
getElementById if the element animate is unknown)
function myGetElementById(id)
{

var element = document.getElementById(id);
if(element==null && document.evaluate!=null)
{

element = document.evaluate(
’//*[@xml:id="’ + id + ’" or @id="’ + id + ’"]’,document,
function(ns)
{

switch(ns) {
case "xml": return "http://www.w3.org/XML/1998/

namespace";

119

D.3. Animating attribute changes

case null: return null;
}

}, XPathResult.ANY_TYPE, null).iterateNext();
}
return element;
}

function setAnimations(number)
{
// IB_A35B_track instead of busTrack
// dashAnimA35B instead of dashAnim
// A35BAnim instead of busTrackAnim
IB_A35B_track=document.getElementById(’IB_A35B_track’+number);
var A35BAnim=myGetElementById(’dashAnimA35B’+number);
trackLength=IB_A35B_track.getTotalLength().toString();

IB_A35B_track.setAttributeNS(null,’stroke-dasharray’,trackLength+’,
’+trackLength);

IB_A35B_track.setAttributeNS(null,’stroke-dashoffset’,trackLength);
A35BAnim.setAttributeNS(null,’from’,trackLength);
A35BAnim.setAttributeNS(null,’values’,trackLength+’;0’);
}

function setAnimIceberg(number){
var IB35Bsegm=document.getElementById(’IB35Bsegm’+number);
var IB35BtrackAnim=myGetElementById(’IB35BtrackAnim’+number);
trackLength=IB35Bsegm.getTotalLength().toString();

IB35Bsegm.setAttributeNS(null,’stroke-dasharray’,trackLength+’,
’+trackLength);

IB35Bsegm.setAttributeNS(null,’stroke-dasharray’,trackLength);
IB35BtrackAnim.setAttributeNS(null,’from’,trackLength);
IB35BtrackAnim.setAttributeNS(null,’values’,trackLength+’;0’);

}

D.3 Animating attribute changes

<g id="SMIL_animations" style=’fill:lightblue; stroke:red;
stroke-width:4’>
<circle id=’IB_A35B’ cx=’0’ cy=’600’ r=’25’>

<animate id="SizAnimIB_A35B_0" attributeName="r"
begin=""from="25" to="35" dur="" calcMode="linear"
repeatCount="none" fill="freeze" />

<animate id="SizAnimIB_A35B_1" attributeName="r"
begin=""from="35" to="15" dur="" calcMode="linear"

120

Appendix D. SVG and JavaScript code

repeatCount="none" fill="freeze" />
<animate id="SizAnimIB_A35B_2" attributeName="r"

begin=""from="15" to="20" dur="" calcMode="linear"
repeatCount="none" fill="freeze" />

<animate id="SizAnimIB_A35B_3" attributeName="r"
begin=""from="20" to="35" dur="" calcMode="linear"
repeatCount="none" fill="freeze" />

</circle>
</g>

D.4 Linear temporal legend

The code below is the implementation of the linear temporal legend.

<g id="LinearTLeg">
<rect id="future" x="299" y="637.5" rx="10" ry="10"

width="401" height="25" style=’fill:lime;
stroke:darkgreen; stroke-width:2’/>

<rect id="past" x="300" y="638" width="0" height="24.2"
rx="10" ry="10" style="fill:orange; stroke:none">
<animate id="animTBarPast" attributeType="XML"

attributeName="width" from="0" to="400" dur=""
fill="freeze" repeatCount="none" />

</rect>
<!-- Here below is actually the present symbol -->
<rect y="632" width="18" height="36" rx="4" ry="4"

fill="darkyellow"> <animate id="animTBarPresent"
attributeName="x" from="293" to="692" dur=""
fill="freeze" repeatCount="none"/>

</rect>
</g>

D.5 Pie-portion cyclic temporal legend

The code below is the implementation of the pie-portion cyclic temporal legend.

<g id="CyclicSMILfull" transform = "translate(100, 180)">
<g transform="rotate(180)">

<circle r="100" fill="#C9C299" stroke="green"/>
<path id="past2" d="M -100 0 A 100 100 0 1 1 -100 0

A 100 100 0 1 1 100 0" visibility="hidden"
fill="#8A4117" stroke="#8A4117" >

<set attributeName="visibility" from="hidden"
to="visible" begin="10s" fill="freeze"/>

121

D.5. Pie-portion cyclic temporal legend

</path>
<path id="past" d="M 100 0 A 100 100 0 1 1 -100 0 "

fill="#8A4117" stroke="#8A4117">
<animateTransform id="animCyclicLeg2"

attributeName="transform" type="rotate"
repeatCount="none" dur="10" by="180" />

</path>
<path id="past" d="M 100 0 A 100 100 0 1 1 -100 0 "

fill="#C9C299" stroke="none"/>
<path id="OnTop" d="M 100 0 A 100 100 0 1 0 -100 0 "

visibility="hidden" fill="#8A4117"
stroke="#8A4117" >

<set attributeName="visibility" from="hidden"
to="visible" begin="10s" fill="freeze"/>

<animateTransform id="animCyclicLeg3"
attributeName="transform"
type="rotate" repeatCount="none" begin="10"
dur="10" by="180" fill="freeze"/>

</path>
<g id="Hand" transform="rotate(-90)">

<line stroke-width="20" y2="-100"
stroke-linecap="round" stroke="red" />
<animateTransform id="animCyclicLeg"
attributeName="transform" type="rotate"
repeatCount="none" dur="20" by="360" />

</g>
</g>

</g>

122

Bibliography

[1] Behaviour. In Oxford English Dictionary. Oxford University Press, Online
version, second edition, 1989.

[2] W. Acevedo and P. Masuoka. Time-series animation techniques for visual-
izing urban growth. Computers & Geosciences, 23(4):423–435, 1997.

[3] Adobe Inc. SWF file format specification, Version 9. Technical report,
Adobe Systems Incorporated, 2008.

[4] N. Andrienko and G. Andrienko. Exploratory analysis of spatial and tem-
poral data : a systematic approach. Springer, Berlin etc., 2006.

[5] N. Andrienko and G. Andrienko. Designing visual analytics methods for
massive collections of movement data. Cartographica: The International
Journal for Geographic Information and Geovisualization, 42(2):117–138,
2007.

[6] N. Andrienko, G. Andrienko, and P. Gatalsky. Supporting visual explo-
ration of object movement. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI 2000), pages 217–220, Palermo, Italy,
May 23-26 2000. ACM Press.

[7] N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio - tempo-
ral visualization : an analytical review. Journal of Visual Languages and
Computing, (14):503–541, 2003.

[8] J. Arlow and I. Neustadt. UML 2 and the unified process : practical object
- oriented analysis and design. Object technology series. Addison Wesley,
Upper Saddle River, USA, 2005.

[9] J. Ballantyne and D. G. Long. A multidecadal study of the number of
antarctic icebergs using scatterometer data. In Proceedings of the Inter-
national Geoscience and Remote Sensing Symposium, pages 3029–3031,
Toronto, Canada, 2002.

[10] F.-J. Behr and H. Li. SUAS mapserver, An open source,
SVG-oriented framework for extended Web Map Services.
Nuremberg, Germany, http://www.svgopen.org/2008/papers/50-
SUAS MapServer an Open Source SVGoriented Framework for extended
Web Map Services, 2008.

123

Bibliography

[11] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. The Univer-
sity of Wisconsin Press, Madison, 1983.

[12] C. A. Blok. Monitoring change: characteristics of dynamic geo-spatial phe-
nomena for visual exploration. In Christian Freksa, Reinhard Moratz, and
Thomas Barkowsky, editors, Spatial Cognition II, volume 1849 of Lecture
Notes in Artificial Interlligence, pages 16–30. Springer, Berlin, Heidelberg,
2000.

[13] C. A. Blok. Dynamic visualization variables in animation to support mon-
itoring of spatial phenomena. ITC Dissertation 119. Universiteit Utrecht,
ITC, Utrecht, Enschede, 2005. Doctorate thesis.

[14] D. DiBiase, A. M. MacEachren, J. B. Krygier, and C. Reeves. Animation
and the role of map design in scientific visualization. Cartography and
Geographic Information Science, 19(4):201–214, 1992.

[15] M. Dodge, M. McDerby, and M. Turner. Geographic Visualization: Con-
cepts, Tools and Applications, chapter The Power of Geographical Visual-
izations, pages 1–10. John Wiley and Sons, 2008.

[16] S. Dodge, R. Weibel, and A.-K. Lautenschutz. Towards a taxonomy of
movement patterns. Information Visualization, 7(3-4):240–252, 2008.

[17] D. Dorling and S. Openshaw. Using computer animation to visualize
space-time patterns. Environment and Planning B: Planning and Design,
19(2):215–227, 1992.

[18] R. I. Dunfey, B. M. Gittings, and J. K. Batcheller. Towards an open archi-
tecture for vector gis. Computers & Geosciences, 32(10):1720–1732, 2006.

[19] R. Edsall and D. J. Peuquet. A graphical user interface for the integration
of time into gis. Seatle, 1997. ACSM/ASPRS Annual Convention.

[20] S. Fabrikant. Towards an understanding of geovisualization with dynamic
displays: Issues and prospects. In T Barkowsky, C Freksa, M Hegarty,
and R. K. Lowe, editors, Reasoning with Mental and External Diagrams:
Computational Modeling and Spatial Assistance, pages 6–11, Standford
University, USA, 2005.

[21] S. Fabrikant and K. Goldsberry. Thematic relevance and perceptual
salience of dynamic geovisualization displays. 2005.

[22] Geology.com. Map of antarctica and southern ocean. http://geology.com/
world/antarctica-satellite-image.shtml.

[23] GeoServer. What is geoserver. http://geoserver.org/display/GEOS/What+is
+Geoserver, Last accessed 14.01.2009.

[24] F. M. Goodchild. Geographic information science and systems for environ-
mental management. In Annual Review of Environment and Resources,
volume 28, pages 493–519. Annual Reviews, 2003.

124

Bibliography

[25] Google. Google earth 4.3, July 2008.

[26] A. L. Griffin, A. M. MacEachren, F. Hardisty, E. Steiner, and B. Li. A
comparison of animated maps with static small-multiple maps for visu-
ally identifying space-time clusters. Annals of the Association of American
Geographers, 96(4):740–753, 2006.

[27] M. Harrower. Animated and web-based maps.
http://www.geography.wisc.edu/ harrower/Geog575/finalProjects03.html,
2003.

[28] M. Harrower. A look at the history and future of animated maps. Carto-
graphica: The International Journal for Geographic Information and Geo-
visualization, 39(3):33–42, 2004.

[29] M. Harrower. The cognitive limits of animated maps. Cartographica: The
International Journal for Geographic Information and Geovisualization,
42(4):269–277, 2007.

[30] M. Harrower and S. Fabrikant. The role of map animation for geographic
visualization. In M. Dodge, M. McDerby, and M. Turner, editors, Ge-
ographic Visualization: Concepts, Tools and Applications, pages 44–66.
John Wiley and Sons, West Sussex, UK, 2008.

[31] International Organization for Standardization (ISO). Iso 19128:2005, ge-
ographic information, Web Map Server interface. Standard, 2005.

[32] D. Jansen, M. Schodlok, and W. Rack. Basal melting of a-38b: A physical
model constrained by satellite observations. Remote Sensing of Environ-
ment, 111(3):195–203, 2007.

[33] S. Kalyuga, P. Chandler, and J. Sweller. Managing split-attention and
redundancy in multimedia instruction. Applied Cognitive Psychology,
(13):351–371, 1999.

[34] B. Köbben. RIMapperWMS: a web map service providing svg maps with
a built-in client. In S. Fabrikant and M. Wachowicz, editors, The Euro-
pean Information Society, Leading the Way with Geo-information, number
XVIII in Lecture Notes in Geoinformation and Cartography, pages 217–
230. Springer-Verlag, Berlin, 2007.

[35] B. Köbben. SVG and geo web services for visualization of time series data
of flood risk. Nuremberg, Germany, 2008. SVG Open.

[36] B. Köbben, R. Lemmens, and A. Wytzisk. A short Introduction to Geo-
webservices. International Institute for Geo-Information Science and
Earth Observation (ITC), Enschede, The Netherlands, 2008.

[37] A. Koussoulakou and M. J. Kraak. Spatio-temporal maps and cartographic
communication. The Cartographic Journal, 29:101–108, 1992.

125

Bibliography

[38] M. J. Kraak. The space-time cube revisited from a geovisualization per-
spective. In Proceedings of the 21st International Cartographic Conference,
pages 1988–1995, Durban, South Africa [CD-ROM], 2003.

[39] M. J. Kraak, R. Edsall, and A. M. MacEachren. Cartographic animation
and legends for temporal maps : exporation and or interaction. In Pro-
ceedings of the 18th ICA International cartographic conference, volume 1,
Stockholm, Sweden, 1997. International Cartographic Association (ICA).

[40] Kevin L. KevLinDev. http://www.kevlindev.com/gui/widgets/slider.

[41] Eric LaMar. WMS Proposed Animation Service Extension
(project, not standard). Open Geospatial Consortium (OGC),
http://portal.opengeospatial.org/files/index.php?artifact id=14698&passcode=
1txw59j11ahnqh4ategh, version 0.9 edition, 2006.

[42] A. M. MacEachren. Time as a cartographic variable. In H. M. Hearnshaw
and D. J. editor Unwin, editors, Visualization in Geographical Information
Systems, pages 115–130. Wiley & Sons, London, 1994.

[43] A. M. MacEachren. How Maps Work, Representation, visualization, and
design. The Guilford Press, New York, 1995.

[44] A. M. MacEachren, F. P. Boscoe, D. Haug, and L. W. Pickle. Geographic
visualization: Designing manipulable maps for exploring temporally vary-
ing georeferenced statistics. In Proceedings IEEE Information Visualiza-
tion Symposium, pages 87–94, North Carolina, USA, 1998.

[45] Map Server. Documentation. http://mapserver.org/documentation, Last
accessed 14.01.2009.

[46] T. Midtbo, K. C. Clarke, and S. Fabrikant. Human interaction with ani-
mated maps: The portrayal of the passage of time. In Proceedings, 11th
Scandinavian Research Conference on Geographical Information Science,
As, Norway, 2007.

[47] M. Monmonnier. Strategies for the visualization of geographic time-series
data. Cartographica: The International Journal for Geographic Informa-
tion and Geovisualization, 27(1):23–36, 1990.

[48] NASA. Available animations. http://www.nasa.gov, Last accessed
11.01.2009 2008.

[49] National Ice Center. Antarctic Icebergs.
http://www.natice.noaa.gov/products/iceberg.

[50] National Ice Center. Iceberg d-15. http://www.natice.noaa.gov/pub/iceberg
images/jpeg/d15 352.jpg, Date of image: 17.12.2008 Last accessed on

14.01.2009.

[51] Natural Resources Canada. The calving of icebergs a-43 and a-
44. http://www.ccrs.nrcan.gc.ca/radar/spaceborne/radarsat1/action/int/ant/
video/calv00 a.wmv, May 2000. Ronne Ice Shelf, Antarctica.

126

Bibliography

[52] A. Neumann and A. Winter. carto.net. http://www.carto.net.

[53] A. Neumann and A. Winter. Time for SVG, towards
high quality interactive web-maps. Beijing, China,
http://www.carto.net/papers/svg/articles/paper icc congress china 2001.pdf,
2001. 20th International Cartographic Congress.

[54] A. Neumann and A. Winter. SVG - scalable vector graphics, a future cor-
nerstone of the WWW-infrastructure. 2002.

[55] A. Neumann and A. Winter. Example for path-morphing.
http://www.carto.net/papers/svg/samples/path morphing.shtml, Last
accessed, 01.12.2009.

[56] A. Neumann, A. Winter, and Tirol Atlas. Webmapping with Scalable Vector
Graphics (SVG): Delivering the promise of high quality and interactive
web maps. In Peterson Michael, editor, Maps and the Internet, pages 197–
220. Elsevier Science, Oxford, 2003.

[57] H. Nguyen Thi Phuong. Event-based clustering: a visual analytic tool
for iceberg movement. MSc, International Institute for Geo-Information
Science and Earth Observation, 2009.

[58] P. J. Ogao and M. J. Kraak. Defining visualization operations for temporal
cartographic animation design. International Journal of Applied Earth
Observation and Geoinformation, 4(1):23–31, 2002.

[59] OGC. OpenGIS Web Map Server Cookbook. Open Geospatial Consortium,
Kris Kolodziej (editor), 1.0.2 edition, 2004.

[60] Open Geospatial Consortium (OGC). OpenGIS Web
Map Service (WMS) Implementation Specification 1.1.1.
http://www.opengeospatial.org/standards/wms, 2003.

[61] Open Geospatial Consortium (OGC). OpenGIS Web
Map Service (WMS) Implementation Specification 1.3.0.
http://www.opengeospatial.org/standards/wms, 2006.

[62] SVG Open. Abstracts and proceedings. Nuremberg, Germany,
http://www.svgopen.org/2008/index.php?section=abstracts and pro-
ceedings#paper 100, August 2008.

[63] Open Geospatial Consortium. OGC Website, 2008. last accessed: Novem-
ber 2008.

[64] Z.-R. Peng and M. H. Tsou. Internet GIS: distributed geographic informa-
tion services for the internet and wireless networks. Wiley & Sons, Hoboken,
2003.

[65] Z.-R. Peng and Ch. Zhang. The roles of geography markup language (gml),
scalable vector graphics (svg), and web feature service (wfs) specifications
in the development of internet geographic information systems (gis). Jour-
nal of Geographical Systems, 6(2):95–116, 2004.

127

Bibliography

[66] M. P. Peterson. Interactive and animated cartography. Prentice Hall series
in Geographic Information Science. Prentice Hall, Englewood Cliffs, USA,
1995.

[67] D. J. Peuquet. It’s about time : a conceptual framework for the represen-
tation of temporal dynamics in geographic information systems. Annals of
the Association of American Geographers, 84(3):441–461, 1994.

[68] R. A. Rensink. Internal Vs external information in visual perception. In
Proceedings of the Second International Symposium on Smart Graphics,
pages 63–70, Hawthorne, USA, 2002.

[69] T. Scambos, J. Maurer, R. Bauer, J. Bohlander, T. Haran, and K. Leitzell. A-
CAP: The Antarctic Cryosphere Access Portal, OGC services. Boulder, Col-
orado USA: National Snow and Ice Data Center, http://nsidc.org/agdc/acap,
Last accessed 12.02.2009.

[70] B. Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the IEEE Symposium on Visual
Languages, pages 336–343, Washington, 1996. IEEE Computer Society
Press.

[71] D. J. Simons and Ch. Chabris. Visual Cognition Lab, University of Illi-
nois. http://viscog.beckman.uiuc.edu/djs lab/demos.html, Last accessed
28.01.2009 1999.

[72] T. A. Slocum, R. B. McMaster, F. C. Kessler, and H. H. Howard. Thematic
cartography and geovisualization. Prentice Hall series in Geographic In-
formation Science. Prentice Hall, Upper Saddle River, USA, 3rd edition,
2009.

[73] Space, science and engineering center. Identify factors influencing iceberg
motion. http://www.ssec.wisc.edu/sose/hi/tracking-icebergs5.html, Last ac-
cessed 14.01.2009.

[74] H. Stephen and D. G. Long. Study of iceberg B10A using scatterometer
data. In Proceedings of the International Geoscience and Remote Sensing
Symposium, volume 3, pages 1340–1342, Honolulu, 2000.

[75] Y. Tang and D. W. Wong. Exploring and visualizing sea ice chart data using
java-based gis tools. Computers & Geosciences, 32:846–858, 2006.

[76] B. Veitch and C. Daley. Iceberg evolution modeling, A background study.
Report, Memorial University of Newfoundland, St. John, Canada, May
2000.

[77] W3C. Scalable vector graphics (svg) 1.1 specification, animation. Technical
report, World Wide Web Consortium, http://www.w3.org/TR/SVG/animate,
2008.

128

Bibliography

[78] W3C. Scalable vector graphics (svg) 1.1 specification, animation. Technical
report, World Wide Web Consortium, http://www.w3.org/TR/SVG/animate,
2008.

[79] W3C. SMIL Animation. Technical report, World Wide Web Consortium,
http://www.w3.org/TR/smil-animation, 2008.

[80] W3C. SVG 1.1 Specification, 11.5 Controlling visibil-
ity. Technical report, World Wide Web Consortium,
http://www.w3.org/TR/SVG/painting.html#VisibilityControl, 2008.

[81] A. Watt, Ch. Lilley, D. J. Ayers, R. George, Ch. Wenz, T. Hauser, K. Lind-
sey, and N. Gustavsson. SVG Unleashed : how to create and manipu-
late Scalable Vector Graphics SVG programming, chapter Chapter 1: SVG
Overview, pages 7–50. Sams, Indianapolis, 2003.

[82] A. Watt, Ch. Lilley, D. J. Ayers, R. George, Ch. Wenz, T. Hauser, K. Lind-
sey, and N. Gustavsson. SVG Unleashed : how to create and manipulate
Scalable Vector Graphics SVG programming, chapter Chapter 11: SVG
Animation Elements, pages 425–481. Sams, Indianapolis, 2003.

129

