
UNIVERSITY OF TWENTE.

Barend Köbben <b.j.kobben@utwente.nl>
Rolf de By, Mahdi Farnaghi, Peter Kabano, Robert Ohuru

AGENDA

- What's ITC (at University Twente)?
- The Geo-information MSc at ITC
- The Scientific GeoComputing Course
 - General setup
 - Learn-Code-Pair-Share
- Outlook
 - Use of the course in other programmes
 - The GeoAcademy Hub

AGENDA

- What's ITC (at University Twente)?
- The Geo-information MSc at ITC
- The Scientific GeoComputing Course
 - General setup
 - Learn-Code-Pair-Share
- Outlook
 - Use of the course in other programmes
 - The GeoAcademy Hub

```
>>> excuse = 'Sorry, no code...'
>>> print (excuse)
```

ITC FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

INTERNATIONAL TRAINING CENTRE FOR SIDNATIONAL TRAINING CENTRE FOR 1968

ITC ESTABLISHED IN 1950

BY PRIME-MINISTER WILLEM SCHERMERHORN

1985

International Institute for Aerospace Survey and Earth Sciences, ITC

2002

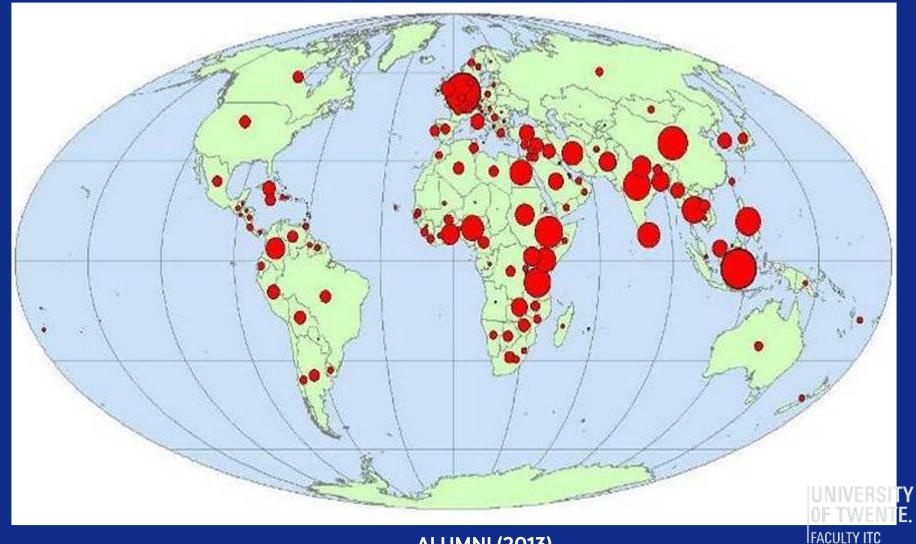
International
Institute for
Geo-Information
Science and
Earth
Observation, ITC

2010

Faculty of Geo-Information Science and Earth Observation,

University of Twente

1950

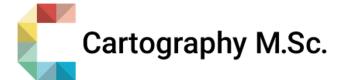

International
Training Centre
for Aerial
Survey, ITC

International Institute for Aerial Survey and Earth Sciences, ITC

https://www.itc.nl/alumni/70-years-of-ITC/

FOCUS ON "GLOBAL SOUTH" (3rd world, developing countries, ...)

EDUCATION PARTNERSHIPS ITC

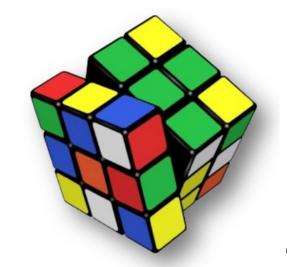


MASTER PROGRAMMES OFFERED BY FACULTY ITC

- MSc Geo-Information Science & Earth Observation
 - 6 specialisations:
 - Applied Earth Sciences, Land Administration, Natural Resources, ,
 Water Resources, Urban Planning & Management
 - and Geoinformatics

MSc Spatial Engineering

Erasmus+ with TU Munich + Vienna + Dresden:



THE GEO-INFORMATION MSC AT ITC

- We train our students to become spatial engineers
- For that they need a thorough knowledge of the processes required to solve geospatial problems
- Teaching them only off-the-shelf GIS tools will create button-pushers
- This age needs problem solvers.
- The only way to accomplish that is learning how to:
 - design,
 - develop and
 - implement your own solutions.

20-Jun-22

We teach using the principles of

SDIlight

We teach using the principles of

SDIlight

We teach using the principles of

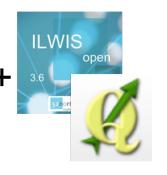
SDIlight

20-Jun-22

We teach using the principles of

SDIlight

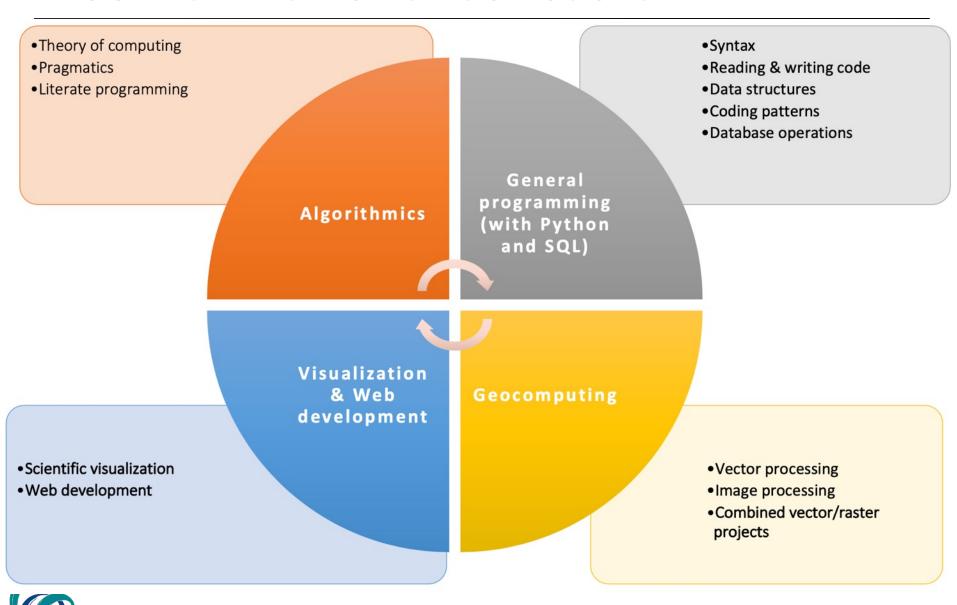
- the technology of Spatial Data Infrastructures (SDI), applied in simple and cost-effective ways
- to provide students with a platform for low-cost, yet powerful ways of sharing data and maps
- Open Standards whenever available
- Open Source where possible



We teach using the principles of

SDIlight

- the technology of Spatial Data Infrastructures (SDI), applied in simple and cost-effective ways
- to provide students with a platform for low-cost, yet powerful ways of sharing data and maps
- Open Standards whenever available
- Open Source where possible


SCIENTIFIC GEOCOMPUTING

GENERAL SETUP

SCIENTIFIC GEOCOMPUTING MODULE

- we cannot teach our students everything about geo-computing & coding in a 7 EC course.
- So we focus on enabling them to develop their capacity to explore, develop and find out things themselves independently.
- Main coding language used is Python (also SQL & Javascript)
- Takes the students from absolute beginners with no coding experience to become confident users of Python and associated coding tools to solve geospatial problems.

EDUCATIONAL SETUP OF OUR COURSE

18

EDUCATIONAL CHALLENGES

- wide range of existing skills in the group
- we need to offer something for all skill levels:
 - build up from ground level, to allow also the least experienced to get it, take it in, and make it work
 - challenges and deepening to cater for more experienced

EDUCATIONAL SETUP (1)

- short lectures (1hr) that focus on key issues
- basic slide set made available before the lecture
- richer slide set made available after the lecture
 - allows to read back and deepen the knowledge and understanding
 - reading this longer version is standard home assignment
- every lecture starts with "flipped class": lecturer poses questions about previous parts

EDUCATIONAL SETUP (2)

- each lecture followed by practical (exercises available on learning platform)
- after the practical, an answer sheet is made available to allow verification
- students organise themselves in pairs with "practical buddy": together you learn more than alone

EDUCATIONAL SETUP: ASSESSMENT

two assignments to hand in:

[20%]

- do together with the "practical buddy"
- no collaboration with others: 2-student team's original work

practical skills test

[30%]

• online, open book

theory test

[40%]

written, closed book

personal reflection report

[10%]

SCIENTIFIC GEOCOMPUTING

LEARN-CODE-PAIR-SHARE

THE GEOCOMPUTING COMPONENT

use of Python with|in GIS technology

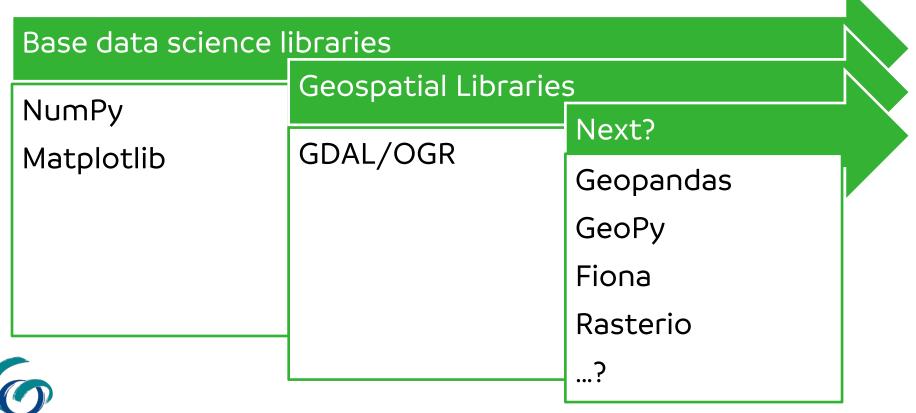
Background GI Science Knowledge

Math, statistics, and geostatistics

Computer science and programming skills

How two apply the first two through the computer science and programming skills to a problem space in GI

PYPROJ



20-Jun-22

GEOCOMPUTING: A CHALLENGE TO TEACH

Learning all useful libraries is impossible

- start from basic library use
- teach geo-libs by main example (GDAL/OGR)
- but where to go from there...?

SOLUTION: LEARN - CODE - PAIR - SHARE

 Each group will LEARN a new Geospatial Library and TEACH it to others

Learn and Code: Groups of 2 work on a new Geospatial library

- generate a Jupyter Notebook on the shared platform (CRIB)
- describe different aspects of the library, with code snippets that work

Pair: Groups will join forces

- combine/select/trim the Jupyter Notebooks
- prepare 8 min presentation (using the platform)

Share: Groups will present

- combined team will present for other students
- other students and instructors ask questions

WHY DO WE DO IT THIS WAY?

- because it works well for this course!
- because it ticks other boxes:

LEARNING BY DOING

ACTIVE LEARNERS

LEARN HOW TO LEARN

LIFE-LONG LEARNING

27

OUTLOOK

USE OF THE COURSE IN OTHER PROGRAMMES

- the course is useful for allmost all students in the geo domains
- the course can function "stand-alone", no specific pre-requirements
- current timetable is 2 days/week spread over 1 semester (10 weeks)
 - condensed version(s) possible (eg. full 4 weeks)
 - other teaching modes (online, hybrid?)
 - but currently no staffing available

E.g. possibly as elective in Spatial Engineering MSc

THANK YOU FOR YOUR ATTENTION!

Questions welcome now...

...or later on b.j.kobben@utwente.nl

