
GML2GEOJSON: PYTHON MIDDLEWARE SERVICES FOR A WEB ATLAS
INTEGRATED IN A SPATIAL DATA INFRASTRUCTURE

B.J. Köbben ⇤

Faculty of GeoInformation Science and Earth Observation (ITC), University of Twente, Netherlands - b.j.kobben@utwente.nl

KEY WORDS: WebCartography, Middleware, Python, OGC standards, GeoJSON, GML

ABSTRACT:

In this paper we describe the concept of an Atlas Services middleware layer that offers intermediate services to enable loose coupling
of a Spatial Data Infrastructure (SDI) with a client–side mapping component.
We first describe the challenges in creating quality maps if these have to be generated within a Spatial Data Infrastructure. We introduce
a theoretical framework and a proof-of-concept architecture, developed at ITC to overcome some of these challenges. Part of this
architecture are the middleware services mentioned above. We discuss in general the philosophy of the service layer, and in particular
how we implemented a GML–to–GeoJSON proxy using Python.

1. INTRODUCTION: ATLAS MAPPING IN AN SDI

In Spatial Data Infrastructures (SDIs) many web services, of dif-
ferent types and with different outputs, come together. Some of
these outputs are maps, but it is challenging to maintain a good
cartographic quality when combining several of these maps. In
a proper Web Atlas we want to present a large amount of infor-
mation, that should be comparable. And this information aims to
“tell a story”, i.e., enable a comprehensive understanding, which
exceeds the understanding obtained from the separate maps on
their own. An atlas should as a whole become more than the
sum of its parts. Such an atlas would benefit from the up-to-date
data in the SDI, and the SDI would benefit from the high-quality
integrated visual summaries of the available spatial data.

The SDI technology in itself will allow mapping the different data
sets simultaneously. The typical setup in current SDIs is that each
separate SDI node, or dataset, has its own mapping service, usu-
ally implemented as a OGC Web Map Service (WMS). In this
situation, depicted in Figure 1a, both maps can be combined in a
(web) client, but because each layer had their styling and symbol-
ising done in isolation, the combination usually is sub-standard,
because the maps, and possibly the data themselves, are incom-
patible.

SDI
node 1

SDI
node 2

MAP 2

MAP
service

MAP
service

MAP 1

Data integration &
mapping

component

SDI
node 1

SDI
node 2

DATA
service

DATA
service

MAP
(a) (b)

Figure 1. Mapping in an SDI environment using MAP services
(a) and using DATA services (b).

⇤Corresponding author

This problem has been recognised early on (Harrie et al., 2011),
and several solutions have been researched, e.g., optimising the
cartographic quality of the map services themselves (Toomanian
et al., 2013). Another strategy, depicted in Figure 1b, is to have
one integrated mapping component, separate from the SDI nodes,
that constructs maps using the data services of these nodes, typi-
cally OGC Web Feature Services (WFS). This is the method we
use in our testbed.

2. THE NATIONAL ATLAS OF THE NETHERLANDS
TESTBED

At ITC, we have been experimenting with a theoretical frame-
work and a proof-of-concept architecture, which we argue could
overcome some of the challenges mentioned and indeed allow for
a web atlas to be an integral part of an SDI. We have described
the architecture and the client-side component in an earlier pub-
lication (Köbben, 2013). Here we introduced the experimental
third edition of the National Atlas of the Netherlands as our test
bed for trying out the theoretical framework and architecture in
a real-life use case. We described the Atlas Map Viewer compo-
nent we created as a web application, using HTML5 technology
and the D3 library, and we have made the proof-of-concept avail-
able on the web (Website Dutch National Atlas / Nationale Atlas
van Nederland, 2017).

In the following sections we will briefly re-hash the principle ar-
chitecture, and then describe the concept of the Atlas Services
middleware layer that offers intermediate services to enable loose
coupling of the Spatial Data Infrastructure with the client-side
mapping component. We will discuss in general the philosophy
of the middleware service layer, and in particular how we imple-
mented a GML–to–GeoJSON proxy using Python.

2.1 Architecture

As explained in section 1, we consume data from Web Feature
Services (WFS), to overcome the cartographic map matching prob-
lems. These WFSes are part of the Dutch National GeoData In-
frastructure (NGDI), the official Netherlands Open Data geopor-
tal, which includes a broad range of possible data services. The
two services specifically mentioned in Figure 2 are the ones we

Journal of GeoPython, Issue 2, June 2017
GeoPython 2017, 08 - 10 May 2017, Muttenz/Basel, Switzerland

7

NATIONAL
ATLAS
SERVICES

NATIONAL
GEODATA
INFRA-
STRUCTURE

...others...

Central Bureau
of Statistics

municipal level
socio-economic

data

WFSWFS
OWS

request

OWS
request

OWS
request

OWS
request

G
M

L

G
M

L

GeoJSONGeoJSON

G
eo

JS
O

N

JS
O

N

Data integration &
mapping

component
(D3 Javascript API)

User input
(menu choices,

search, etc.)

Atlas maps
HTML5

+
SVG

web pages

Atlas
metadata

GML2GeoJSON
proxy

Atlas basemaps
(coastlines,

rivers,
cities etc)

Ministry of
Environment

protected
natural
areas

WFS

WFS

...others...

spatial aggregator
service

Figure 2. The architecture of the National Atlas of The
Netherlands testbed (from Köbben, 2013), with the

GML2GeoJSON proxy highlighted.

happen to use in the prototype at the time of writing; which ser-
vices are actually used by the atlas is determined by the settings
in the Atlas metadata.

This metadata is in fact the main atlas service configuration com-
ponent, at the moment implemented as a simple JSON datas-
tore in the National Atlas Services layer. It includes settings
for each map, such as: where and how to get the data (service
URL, method, service parameters, format), if and how to classify
the data, which map type to use, the symbol colours and sizes,
etcetera.

These settings are used by the mapping component, that com-
bines and portrays the data. For reasons described in the earlier
publication (Köbben, 2013), we have implemented this client–
side, as a JavaScript web application, using HTML5 technology
and the D3 library (Bostock et al., 2011, D3 website, 2017) to
create data-driven graphics.

This approach we have chosen has one considerable drawback:
The standardised OGC WFS services typically provide their data
in the Geography Markup Language (GML). GML is a versatile
and powerful format, but it is also a complicated and verbose
one. And because we can and want to use a very wide range
of existing data services, we therefore can expect GML data of
different versions and with a large variation in GML application
schemata. We decided it would not be sensible to try parsing this
client–side in JavaScript. Instead we chose to supply the mapping
component with GeoJSON data. This geographic extension of the

JavaScript Object Notation format is light-weight and optimized
for use in client–side web applications. Although it is at present
an IETF standard (Butler et al., 2016), and some services in the
NGDI do actually supply data in GeoJSON format, many others
only support GML output, as that is the format required by the
OGC WFS standard.

To overcome that limitation, we have introduced the GML2Geo-
JSON proxy, highlighted in Figure 2, as a middleware service in
our National Atlas Services layer.

2.2 The Atlas Middleware

The GML2GeoJSON proxy is needed because the client-side map-
ping component can only handle GeoJSON for the spatial data,
and that would only work if the system would be tightly–coupled,
to specific data services only. In order to maintain a loosely–

coupled setup, the conversion from GML to GeoJSON was re-
alised as an independent proxy service, that could in theory be
used by anyone needing such a conversion. The National Atlas
Services is the middleware layer we use to provide for several of
such intermediate and supporting services.

Another component in this National Atlas Services layer is the
Atlas basemaps service. This serves data for several map lay-
ers that are used repeatedly, such as coastlines, major waterways
and administrative borders. This enables us to provide a common
look and feel to the maps. Note that this is also implemented
as a loosely-coupled, standard WFS, and as such is a fully in-
dependent stand–alone webservice node. It could therefore be
considered as part of the NGDI layer just as well.

At present, the metadata is included in the National Atlas ser-
vices layer as a static JSON datastore. For reasons elaborated in
(Köbben, 2013), the metadata settings are maintained ‘by hand’.
Because of this the National Atlas cannot function without an
editorial team. This staff is responsible for the cartographic qual-
ity of the atlas, and for example should also keep track of new
geospatial information being made available by national providers,
as well as taking account of the changing needs and interests of
the users. Several researchers have been looking into middleware
components to automate some of the editorial tasks. For example
(Zumbulidze, 2010) has investigated automated updating mecha-
nisms, and (Chanthong et al., 2012) proposed business processes
to securely manage the administration; but as these both were of
an experimental nature they have not been integrated yet in the
current system.

The middleware services can be implemented in any manner, as
long as they use the same OGC and other standards employed in
the rest of the system. The Atlas Basemaps service is a MapServer
WFS instance, the metadata is (as explained before) a simple
JSON file. The GML2GeoJSON proxy is a Python CGI appli-
cation, and in the next section we will elaborate how this service
was implemented.

3. THE GML2GEOJSON SERVICE

We investigated various possibilities to implement the conver-
sion from GML coming from existing WFS services to GeoJ-
SON to be consumed by our JavaScript mapping client. One op-
tion was to use an existing WFS implementation that is capable
of returning GeoJSON as its output format, such as GeoServer
(http://geoserver.org/). Because this software can also act
as a WFS client, a so–called ‘cascading server’ can be set up,

Journal of GeoPython, Issue 2, June 2017
GeoPython 2017, 08 - 10 May 2017, Muttenz/Basel, Switzerland

8

WFS size (in Mb) load time (in s) load time
GML3 GeoJSON WFS GML3 GML2GeoJSON % increase

A: 31 airports 0.58 0.5 0.26 0.77 196.2
B: 12 provinces 2.9 3.9 6.75 9.5 40.7
C: 431 municipalities 73.7 98.4 166.2 230.4 38.6

Table 1. Results of limited performance testing (load times are averages of 50 attempts).

meaning the input data for its WFS can be another WFS service.
We tested that option and got promising results, both in robust-
ness and performance. But we decided against further develop-
ment for two reasons: Firstly, using a complex software suite
such as GeoServer for this purpose alone seems like overkill,
and would introduce serious maintenance and installation efforts;
Secondly, it would move part of the National Atlas metadata to
the GeoServer administration system, because that is where you
would have to set up the details of how the GeoServer WFS client
would contact the original WFS service from the NGDI. We pre-
fer to keep all metadata in one coherent system.

While looking into and testing GML to GeoJSON conversion in
general, we had successfully used the ogr2ogr command line
programme that is part of the GDAL/OGR library (http://www.
gdal.org/). This is the foremost open source software library
for reading and writing raster and vector geospatial data formats,
and provides simple and powerful abilities for data conversion.
We therefore decided to implement a simple Python CGI appli-
cation ourselves, to wrap the ogr2ogr functionality in a web ser-
vice. The UML sequence diagram in Figure 3 shows how our
setup functions.

ogr2ogr.py

[Python]

SDI Node

[OGC WFS]

gml2geojson.py

[Python]

Data Integration
& Mapping

[D3 javascript]

invoke ogr2ogr function

(in = wfs: out = geojson)request for WFS GML
[WFS GetFeature]

Result [GML stream]

Result [GeoJSON stream]
parse data or handle errors

parse & filter request

GeoJSON content

(or HTML if error)

request for proxy
[gml2geojson.py?url=]

Figure 3. UML sequence diagram of the GML2GeoJSON
service.

The client–side mapping component will have retrieved the source
for the data from the ATLAS metadata store. In case this is a WFS
returning GML, the URL pointing to this service will be sent to
our proxy, by means of adding the original URL to the proxy url:
.../gml2geojson.py?url=originalURL

The Python CGI application parses the original URL, and does
some limited checking and filtering. The service then invokes the
ogr2ogr.py module. This is a direct Python port of the original
ogr2ogr C++ code shipped with GDAL/OGR, and can be down-
loaded from the code repository at github.com/sourcepole/
ogrtools/.

The infile parameter of ogr2ogr is provided with the filtered
URL, preceded with the keyword wfs: to invoke the OGR WFS
client. The filtering mentioned includes retrieving the TYPENAME

parameter from the original URL, as that has to be supplied sep-
arately to ogr2ogr in the layername parameter. The ogr2ogr

module then retrieves the GML output from the original data ser-
vice and converts the resulting output into GeoJSOn and feeds it
back to our proxy service. This resulting data is then returned to
the javascript client, in the form of a mappable GeoJSON stream,
or, when appropriate, as an HMTL encoded error message.

The URL for the original WFS service can be any valid request.
The filtering and parsing mentioned earlier might therefore seem
to be unnecessary, but is implemented nevertheless for the fol-
lowing reasons:

• The request may be a valid OGC WFS request, as described
in the OGC WFS standard (OGC, 2010), but one that does
not make sense as input for the National Atlas, such as the
GetCapabilities or DescribeFeature requests. Therefore the
system checks if the URL is a proper WFS GetFeature re-
quest.

• Although we implement the 2.0 version of the standard, we
do not support the request of more then one data layer at a
time that this version introduced (using the TYPENAMES
parameter instead of TYPENAME). The reason is that the
ogr2ogr module and the javascript mapping client are both
not equipped to handle multi-layer input;

• The WFS GetFeature standard includes a parameter RE-
SULTTYPE, that is used to either ask for actual data output
(=results), or only for a count of the items to be returned
(=hits). The latter can not be processed in our set-up, and
thus will be caught in an error message.

3.1 Results

While developing the GML2GeoJSON proxy, we had mixed ex-
periences with the performance of the system: While the system
worked and was generally robust, the throughput was not impres-
sive, to say the least. We have undertaken limited testing, which
resulted in the data depicted in Table 1. We used three WFS data
services: A is a very simple set of 31 airports modelled as point
data, with only a few attributes (name and ID), loaded from an
ITC internal server running MapServer. B is the Dutch Central
Bureau of Statistics outlines of the 12 provinces of the Nether-
lands, served by a GeoServer WFS in the NGDI, with only the
names and IDs as attributes. C comes from that same server, and
consists of the 431 municipalities of the Netherlands, with a set
of 47 “key statistics” for each object.

In general one can see that WFS requests of large datasets are
not efficient to start with, as has been remarked before on by var-
ious authors (Giuliani et al., 2013, a.o.) As can be concluded
from the results, retrieving the data through the GML2GeoJSON
proxy adds, not surprisingly, considerable processing time to any
request. But one can also observe that this extra time becomes
relatively smaller if the data to be retrieved is larger.

Journal of GeoPython, Issue 2, June 2017
GeoPython 2017, 08 - 10 May 2017, Muttenz/Basel, Switzerland

9

Although certainly not fast, we did find the system to work reli-
ably and without errors. Note that we have only tested it properly
for the limited use cases in the National Atlas testbed. Therefore,
although in theory it should work for any valid WFS request, in
practice it should be treated very much as a bèta version for any
purpose outside our testbed.

The Python source code is available as Open Source (under the
GPL license) at out github repository (https://github.com/
kobben/gml2geojson) and we welcome anybody to help us de-
velop it further.

4. CONCLUSIONS

The original research funding that started our efforts in creating
the National Atlas of the Netherlands Testbed already ended in
2009. Since then, we have been continuing the development
of the National Atlas prototype as an informal project, and the
progress has been slow and limited in scope. We consider it as an
excellent testing ground for our students’ and staff’s research in
the field of Spatial Data Infrastructures, Spatial Services devel-
opment and Web Cartography.

The GML2GeoSJON proxy described in this paper is an example
of such effeorts, and we foresee the implementation of more mid-
dleware services. Currently work is ongoing on a spatial aggre-
gator service, that for example would perform the generalization
of socio-economic data at the municipal level into higher level
provincial data, including spatial aggregation of the geometries
as well as attribute aggregation by e.g., averaging, summarizing
or other statistics.

We think that the current proof-of-concept already demonstrates
that high-quality atlas mapping using services from a national
SDI is feasible, and that is potentially provides many advantages
in up-to-dateness, flexibility, extensibility as well as interoper-
ability and adherence to standards.

REFERENCES

Bostock, M., Ogievetsky, V. and Heer, J., 2011. D3: Data-Driven
Documents. IEEE Transactions in Visualization & Computer

Graphics (Proc. InfoVis).

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S. and Schaub,
T., 2016. The GeoJSON Format. Standards specification -
Proposed Standard RFC 7946, Internet Engineering Task Force
(IETF).

Chanthong, B., Köbben, B. and Kraak, M., 2012. Towards a Na-
tional Atlas - geo web service. In: Proceedings of ACIS 2012- The

First Asian Conference on Information Systems (6-8 Dec 2012),
Siem Reap, Cambodia, p. 9.

D3 website, 2017. http://d3js.org.

Giuliani, G., Dubois, A. and Lacroix, P., 2013. Testing OGC
Web Feature and Coverage Service performance: Towards effi-
cient delivery of geospatial data. Journal of Spatial Information

Science (7), pp. 1–23.

Harrie, L., Mustière, S. and Stigmar, H., 2011. Cartographic qual-
ity issues for view services in geoportals. Cartographica: The

International Journal for Geographic Information and Geovisu-

alization 46(2), pp. 92–100.

Köbben, B., 2013. Towards a National Atlas of the Netherlands as
part of the National Spatial Data Infrastructure. The Cartographic

Journal 50(3), pp. 225–231.

OGC, 2010. OpenGIS Web Feature Service 2.0 Interface Stan-
dard. Technical Report 09-025r1, Open Geospatial Consortium.

Toomanian, A., Harrie, L., Mansourian, A. and Pilesjö, P., 2013.
Automatic integration of spatial data in viewing services. Journal

of Spatial Information Science. (6), pp. 43–58.

Website Dutch National Atlas / Nationale Atlas van Nederland,
2017. http://www.nationaleatlas.nl/.

Zumbulidze, M., 2010. The updating process of a national atlas
in a GDI environment: The role of atlas editors. Msc thesis, ITC
- University of Twente, Enschede.

Journal of GeoPython, Issue 2, June 2017
GeoPython 2017, 08 - 10 May 2017, Muttenz/Basel, Switzerland

10

