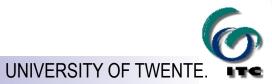
UNIVERSITY OF TWENTE.

WEB CARTOGRAPHY IN A WORLD OF SERVICES, SDI'S AND WEB 2.0

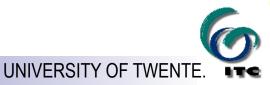
Barend Köbben <kobben@itc.nl>


EuroSDR workshop, Lund, 5 May 2011

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Background (I)

changing role of cartography in a changing world:


- information disseminated in digital ways
- all about sharing, interoperability, web services, SDIs and the modern two—way Web 2.0
- this has consequences on the design of (web)cartography solutions in this environment
 subject of research projects in our group at ITC

Background (2)

Webcartography research projects at ITC

share the larger aim of improving mapping within the framework of *loosely coupled, distributed webservices* fit within our *SDI^{light}* approach

Background (2)

Webcartography research projects at ITC

share the larger aim of imp framework of *loosely couple* fit within our *SDI^{light}* apprc

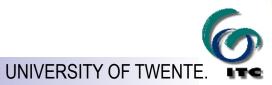
SDJlight

UNIVERSITY OF TWENTE

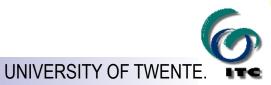
Background (2)

Webcartography research projects at ITC

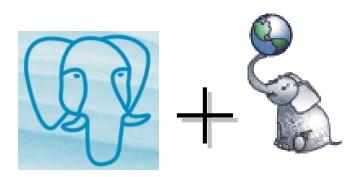
share the larger aim of imp framework of *loosely couple* fit within our *SDI^{light}* approx


SDI

SDI^{light} approach


- a down-to-earth approach towards SDI
- Open Standards whenever available
- Open Source where possible
- used in teaching, projects and research
- provides researchers, students and partners with a platform for relatively simple, low—cost, yet powerful ways of sharing data amongst various stakeholders

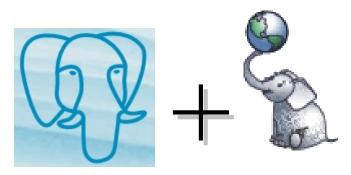
application layer (middle–ware)

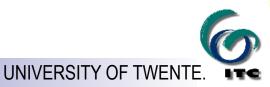

data layer (back-end)



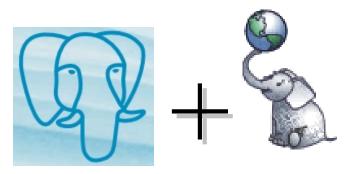
© 2011 – Barend Köbben

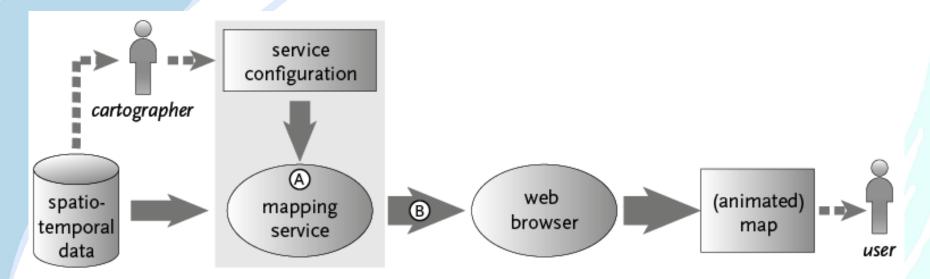
application layer (middle–ware)

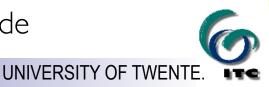

© 2011 – Barend Köbben


client-side

GeoServer MAPSERVER

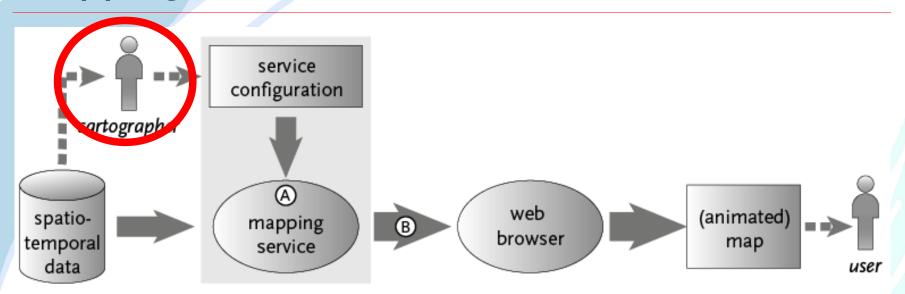


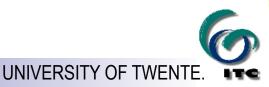

GeoServer MAPSERVER

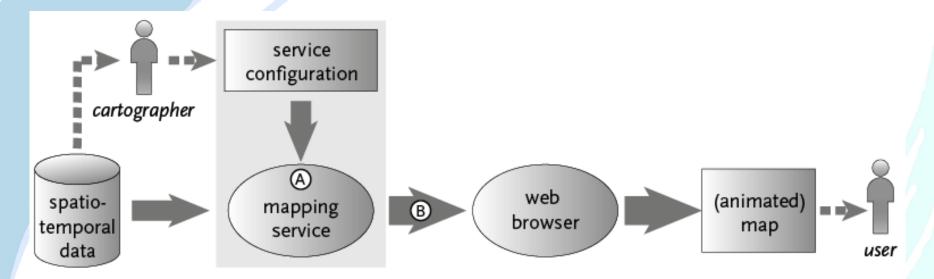


© 2011 – Barend Köbben




- possibilities for *direct* and *automatic* production of maps
 where 'direct' means: generated case—by—case and on—the—fly from the data, no conversion or pre-processing needed for purpose of visualisation only
 - ▶ important for system to be an SDI node
 - ▶ able to consume data from any other SDI node




possibilities for *direct* and *automatic* production of maps
where 'automatic' means:
maps will be generated from the spatio-temporal data
by the system ''working by itself with little or no direct
human control'' (Concise Oxford Dictionary of Current English)

- possibilities for *direct* and *automatic* production of maps
 where 'automatic' does NOT mean: the system ''simulates human action'' (Oxford English Dictionary)
 - Including the cartographic decisions as to what type of map and what map properties to use for different data—types and data—instances

nowadays a very important dissemination channel
but partly takes us back to ''the old days'':

- ▶ "pre-cooked" maps in a one—way process
- ▶ little user influence on design and content
- ► little interactivity and exploration possibilities
- "cartographer" (map—maker) ≠ user determines most of the map design and usability

UNIVERSITY OF TWENTE

How to increase interactivity & user input..?

using rich map formats: Scalable Vector Graphics

- SVG is open standard XML-based vector graphics
 - High quality (carto)graphics & attribute info
- Some WMS exist with (limited) SVG, but all treat SVG as 'static graphics format' only
 - SVG also can hold attribute data
 - SVG also can provide animation
 - SVG also can provide application logic
- Can support built-in Graphical User Interface (GUI)
- Can support animated maps

RIMapperWMS and TimeMapper

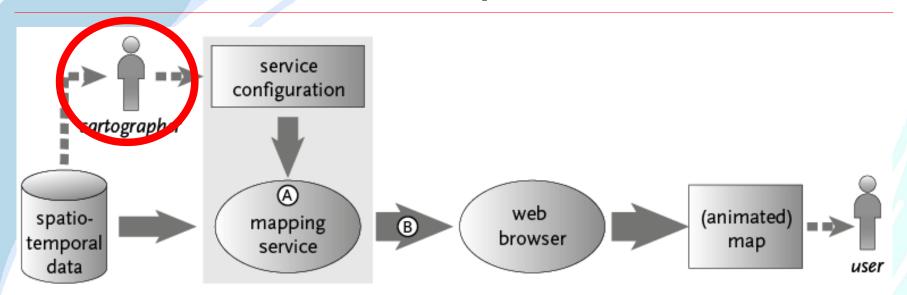
spatial database back-end (PostgreSQL/PostGIS)

spatial and attribute data

Web Map Service configuration


server application (Java)

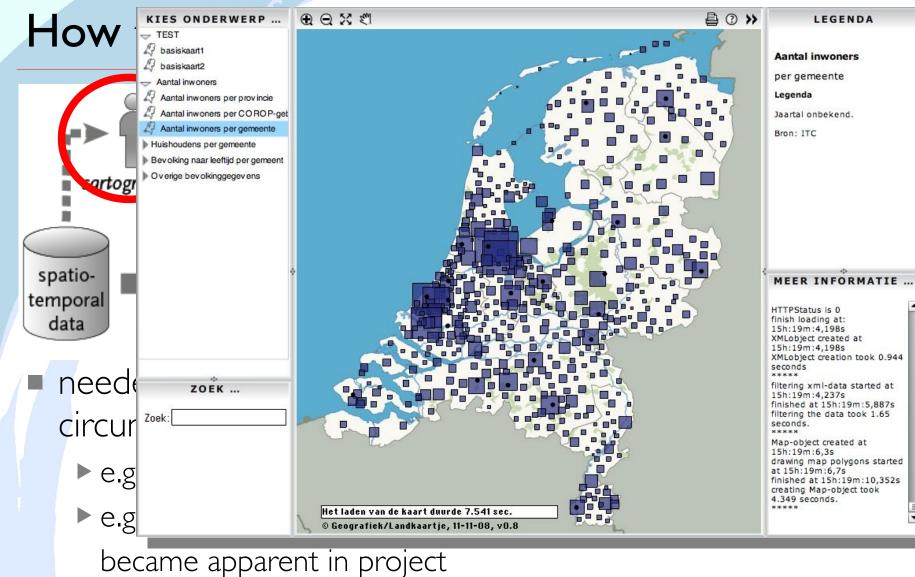
- responds to WMS compliant requests
- ▶ provides output in SVG
- ▶ with built—in GUI
- ▶ with built—in animation

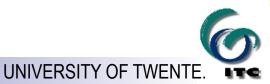


mobile or desktop web client

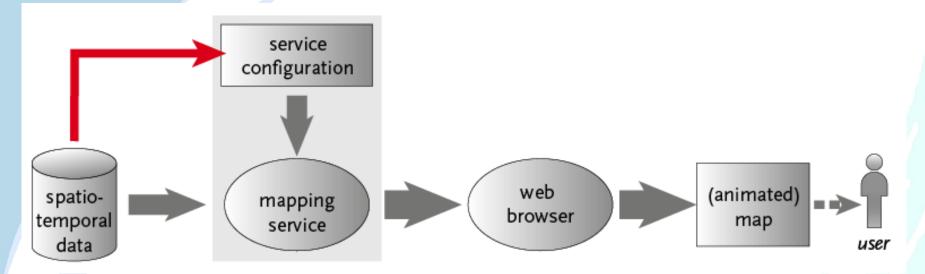
▶ renders interactive & dynamic SVG maps

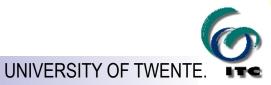



How to automate it fully ..?

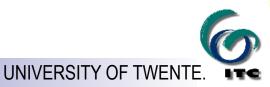

 needed for mapping services that can adjust to changing circumstances

- ▶ e.g. data source changes
- ▶ e.g. data instance updates




3rd edition National Atlas for the Netherlands

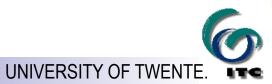
How to automate it fully ..?



- create service configuration from data
- *direct*, based on:
 - ► cartographic knowledge
 - ▶ intended user and/or usage of the map
 - ▶ properties of the data

This is not a recent challenge...!

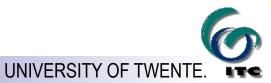
- B.J. Köbben (1988): Choro–Expert: a front–end expert system determining data–appropriatness for choropleth mapping (MSc thesis, Utrecht)
- 1980s: the DLM-DCM paradigm was introduced Digital Landscape Model → Digital Cartographic Model
 the automatic generation of DCMs from DLMs has been subject of a small surge of research
 in the 80s using Knowledge Based / Expert Systems
 it somehow this never took off but it should(?) re-emerge in a service environment


Why did this not happen (yet) ...?

We think it's a case of missing information:

cartographic knowledge

intended user and/or usage of the map

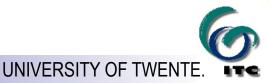

properties of the data

We think it's a case of missing information:

cartographic knowledge
 → solved for 'simple' maps (most common cases)
 intended user and/or usage of the map

properties of the data

We think it's a case of missing information:

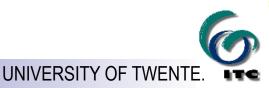

cartographic knowledge

 → solved for 'simple' maps (most common cases)

 intended user and/or usage of the map

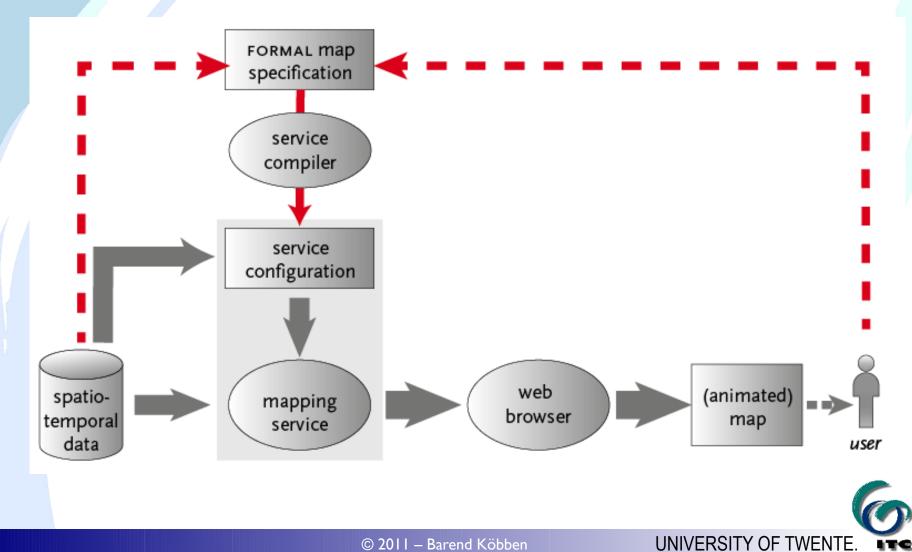
 → solveable for 'simple' use goals (most common cases)

 properties of the data



We think it's a case of missing information:

cartographic knowledge \rightarrow solved for 'simple' maps (most common cases) intended user and/or usage of the map solveable for 'simple' use goals (most common cases) properties of the data → this is the **main culprit**: meta-data is a problem (in real life) anyway automatic meta-data generation even more ▶ the meta-data needed is not the usual set only (e.g. measurement level)


UNIVERSITY OF TWENTE

- another missing part:
 a FORMAL map specification language
 \$\not service configuration file (e.g. SLD)
 this is what created by a compiler based on the formal map spec, plus (meta-)data and user input
 - ✓ traditional map specifications (e.g. topomap specs)
 - these are focussed on producing a specific map product, we want a focus on information output
 - ► formalised specification in the computer science sense
 - defines an outcome using a formal (declarative) language
 - with degrees of freedom (e.g. ranges of acceptable values)
 - in a controlled and consistent manner

Towards automatic mapping in services environment

possible use of a FORMAL map specification language

UNIVERSITY OF TWENTE.

QUESTIONS...?

Barend Köbben

kobben@itc.nl

http://www.itc.nl/ http://kartoweb.itc.nl/kobben/ http://www.nationaleatlas.nl/ http://kartoweb.itc.nl/RIMapper/ http://kartoweb.itc.nl/TimeMapper/

